首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
Mechanisms of glucocorticoid signalling   总被引:9,自引:0,他引:9  
  相似文献   

2.
3.
Glucocorticoids regulate gene expression via binding of the ligand-activated glucocorticoid receptor (GR) to glucocorticoid-responsive elements (GRE). To identify GR-binding sites, we developed a modified yeast one-hybrid system which enables rapid and efficient identification of genomic targets for DNA-binding proteins. The human GR expression vector was transformed into yeast cells containing a library of human genomic fragments cloned upstream of the reporter gene URA3. The genomic fragments with GR-binding sites were identified by growth of yeast clones in media lacking uracil but containing dexamethasone. DNA fragments were recovered by colony-direct PCR and GRE sequences were predicted by in silico analysis. Using electrophoretic mobility shift assay and fluorescence correlation spectroscopy, we demonstrated that 314 predicted GREs could directly interact with recombinant human GR proteins. In addition, when the genomic fragments were inserted in front of the heterologous SV40 promoter, at least 150 fragments could function as GREs in HEK293 cells. Furthermore, we identified four functional regulatory polymorphisms which may influence individual variation in sensitivity to glucocorticoids. These results provide insights into the molecular mechanisms underlying the physiological and pathological actions of glucocorticoid.  相似文献   

4.
U Strhle  W Schmid    G Schütz 《The EMBO journal》1988,7(11):3389-3395
  相似文献   

5.
The gene encoding rat cystatin S (Cys S), a salivary gland-specific secretory protein, has CAAT and TATA boxes upstream of the inititation codon (Cox and Shaw, 1992), and contains regions that resemble those of other hormonally responsive eukaryotic genes. The 5'-flanking sequence of the rat Cys S gene has a potential CREB/AP-1 binding site (Rupp et al., 1990; Trejo et al., 1992), two potential glucocorticoid responsive elements (GREs, Drouin et al., 1989), and a possible GR/PR (glucocorticoid/progesterone) responsive element (Forman and Samuels, 1990). One of these potential GREs is adjacent to a potential AP-2 binding site, and another is typical of the glucocorticoid and progesterone receptor binding site. In this report, we have identified three regions in the 5'-flanking region of the Cys S gene that are found in salivary gland-specific genes (Ting et al., 1992) with a GT-rich region located between conserved elements II and III. Transfection experiments described in this paper suggest that a 281-bp DNA fragment from the Cys S gene promoter region with conserved elements II and III, the GT-rich region, and a possible GR/PR responsive element contains a negative regulatory element. In addition, our experiments suggest that the GT-rich region by itself is acting as a positive regulatory element.  相似文献   

6.
7.
8.
9.
10.
11.
A combination of the gel retardation assay and interference by hydroxyl radical modification (missing nucleoside technique) was used to analyze the interaction of the glucocorticoid receptor (GR) with various glucocorticoid responsive elements (GRE). Short oligonucleotides containing the 15-bp GRE and 1 to 3 flanking base pairs on each side, are bound with very low affinity. The same GREs, when positioned in the center of a large DNA fragment (40-50 bp), show high affinity for the receptor. However, when the GRE is positioned at the border of a 54-bp fragment, the affinity of the GR for the GRE decreases markedly. The DNA binding affinity increases linearly with each added flanking base pair and optimal binding is observed with 8-10 flanking bp. Thus, the nonconserved DNA sequences flanking the GRE contribute significantly to the free energy of receptor binding to DNA. Using larger DNA fragments (greater than 100 bp) and a smaller form of the receptor (40 kD), two retarded complexes are found that correspond to monomeric and homodimeric receptor DNA complexes. The DNA-binding domain of the GR (20 kD), expressed in bacteria, binds to the GRE as a monomer as well as a dimer and can form heterodimers with the native 94-kD GR. Insertion or deletion of one single base pair between the two halves of the GRE reduces the affinity for the homodimeric form of the native GR, and inhibits the function of the GRE in gene transfer experiments, suggesting that a dimer of the GR is the functional entity that binds to the GRE.  相似文献   

12.
An unusual glucocorticoid-responsive element (called GRE A) was found to mediate the induction of the cytosolic aspartate aminotransferase gene by glucocorticoids and was bound by the glucocorticoid receptor in a DNase I footprinting assay. GRE A consists of two overlapping GREs, each comprising a conserved half-site and an imperfect half-site. The complete unit was able to confer glucocorticoid inducibility to a heterologous promoter (delta MTV-CAT). Mutation of any of the half-sites, including the imperfect ones, abolished inducibility by the hormone, demonstrating that each of the isolated GREs was inactive. In electrophoretic mobility shift assays, purified rat liver glucocorticoid receptor (GR) formed a low-mobility complex with GRE A, presumably containing a GR tetramer. When purified bacterially expressed DBD was used, low-mobility complexes as well as dimer and monomer complexes were formed. In inactive mutated oligonucleotides, no GR tetramer formation was detected. Modification of the imperfect half-sites in order to increase their affinity for GR gave a DNA sequence that bound a GR tetramer in a highly cooperative manner. This activated unit consisting of two overlapping consensus GREs mediated glucocorticoid induction with a higher efficiency than consensus GRE.  相似文献   

13.
14.
15.
16.
17.
18.
D B Tully  J A Cidlowski 《Biochemistry》1990,29(28):6662-6670
Sucrose density gradient shift assays were adapted to permit determination of the affinity of interaction between human glucocorticoid receptors (GR) and DNA under conditions of DNA excess. Saturation analyses were performed to ascertain dissociation constants for the interaction of activated human GR with each of five DNA fragments. Centrifugation of GR-DNA complexes on sucrose gradients under nearly isotonic salt conditions revealed similar affinities with dissociation constants in the range of 2-16 nM for GR interaction with DNA fragments containing glucocorticoid response elements (GREs) exhibiting partial dyad symmetry. By contrast, GR exhibited virtually no affinity for non-GRE-containing DNA or for DNA containing only GRE half-sites. Additionally, GR showed evidence of multiple-site interaction with a DNA fragment containing two partially symmetric GREs, but interacted at only one site of an MMTV LTR DNA fragment containing a single partially symmetric GRE along with a cluster of three half-GREs. Together these data indicate that under physiologically relevant conditions, glucocorticoid receptors have high selectivity and affinity only for DNA containing specific partially symmetric GREs and further suggest that this high affinity for such DNA sites may be sufficient to account for the selective regulation of gene expression observed in glucocorticoid-responsive cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号