首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioinformatics approaches to carbohydrate research have recently begun using large amounts of protein and carbohydrate data. In this field called glycome informatics, the foremost necessity is a comprehensive resource for genome-scale bioinformatics analysis of glycan data. Although the accumulation of experimental data may be useful as a reference of biological and biochemical information on carbohydrates, this is insufficient for bioinformatics analysis. Thus, we have developed a glycome informatics resource (http://www.genome.jp/kegg/glycan/) in KEGG (Kyoto Encyclopedia of Genes and Genomes), an integrated knowledge base of protein networks, genomic information, and chemical information. This review describes three noteworthy features: (1) GLYCAN, a database of carbohydrate structures; (2) glycan-related pathways; and (3) Composite Structure Map (CSM), a map illustrating all possible variations of carbohydrate structures within organisms. GLYCAN includes two useful tools: an intuitive drawing tool called KegDraw, and an efficient glycan search and alignment tool called KEGG Carbohydrate Matcher (KCaM). KEGG's glycan biosynthesis and metabolism pathways, integrating carbohydrate structures, proteins, and reactions, are also a pivotal resource. CSM is constructed as a bridge between carbohydrate functions and structures. CSM is able to display, for example, expression data of glycosyltransferases in a compact manner. In all the KEGG resources, various objects including KEGG pathways, chemical compounds, as well as carbohydrate structures are commonly represented as graphs, which are widely studied and utilized in the computer science field.  相似文献   

2.
3.
4.
5.
Lectin microarray is an emerging technique, which will accelerate glycan profiling and discovery of glycan-related biomarkers. One of the most important stages in realizing the potential of the technique is to achieve sufficiently high sensitivity to detect even the low concentrations of some target glycoproteins which occur in sera or tissues. Previously, we developed a lectin microarray based on an evanescent-field fluorescence-assisted detection principle that allows rapid profiling of glycoproteins. Here, we report optimization of procedures for lectin spotting and immobilization to improve the sensitivity and reproducibility of the lectin microarray. The improved microarray allows high-sensitivity detection of even monovalent oligosaccharides that generally have a low affinity with lectins (K(d)>10(-6) M). The LOD observed for RCA120, a representative plant lectin, with asialofetuin, and an asialo-biantennary N-glycan probe were determined to be 100 pg/mL and 100 pM, respectively. With the improved lectin microarray system, closely related structural isomers, i.e., Le(a) and Le(x), were clearly differentiated by the difference in signal patterns on relevant multiple lectins, even though specific lectins to detect these glycan structures were not available. The result proved a previously proposed concept of lectin-based glycan profiling.  相似文献   

6.
The EUROCarbDB project is a design study for a technical framework, which provides sophisticated, freely accessible, open-source informatics tools and databases to support glycobiology and glycomic research. EUROCarbDB is a relational database containing glycan structures, their biological context and, when available, primary and interpreted analytical data from high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance experiments. Database content can be accessed via a web-based user interface. The database is complemented by a suite of glycoinformatics tools, specifically designed to assist the elucidation and submission of glycan structure and experimental data when used in conjunction with contemporary carbohydrate research workflows. All software tools and source code are licensed under the terms of the Lesser General Public License, and publicly contributed structures and data are freely accessible. The public test version of the web interface to the EUROCarbDB can be found at http://www.ebi.ac.uk/eurocarb.  相似文献   

7.
The term 'glycomics' describes the scientific attempt to identify and study all the glycan molecules - the glycome - synthesised by an organism. The aim is to create a cell-by-cell catalogue of glycosyltransferase expression and detected glycan structures. The current status of databases and bioinformatics tools, which are still in their infancy, is reviewed. The structures of glycans as secondary gene products cannot be easily predicted from the DNA sequence. Glycan sequences cannot be described by a simple linear one-letter code as each pair of monosaccharides can be linked in several ways and branched structures can be formed. Few of the bioinformatics algorithms developed for genomics/proteomics can be directly adapted for glycomics. The development of algorithms, which allow a rapid, automatic interpretation of mass spectra to identify glycan structures is currently the most active field of research. The lack of generally accepted ways to normalise glycan structures and exchange glycan formats hampers an efficient cross-linking and the automatic exchange of distributed data. The upcoming glycomics should accept that unrestricted dissemination of scientific data accelerates scientific findings and initiates a number of new initiatives to explore the data.  相似文献   

8.
Mass spectrometry is the main analytical technique currently used to address the challenges of glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures of different glycan variations. Determination of glycan structures from analysis of MS data is a major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are of critical importance. However, all the approaches currently available have inherent restrictions to the type of glycans they can identify, and none of them have proved to be a definitive tool for glycomics. GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by matching the corresponding theoretical list of fragment masses against the list of peaks derived from the spectrum. The tool provides an easy to use graphical interface, a comprehensive and increasing set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to offer complete support for the routine interpretation of MS data. The software is available for download from: http://www.eurocarbdb.org/applications/ms-tools.  相似文献   

9.
With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services.  相似文献   

10.
The role of lectins in mediating cancer metastasis, apoptosis as well as various other signaling events has been well established in the past few years. Data on various aspects of the role of lectins in cancer is being accumulated at a rapid pace. The data on lectins available in the literature is so diverse, that it becomes difficult and time-consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. Not only do the lectins vary significantly in their individual functional roles, but they are also diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities and specificities as well as their potential applications. An organization of these seemingly independent data into a common framework is essential in order to achieve effective use of all the data towards understanding the roles of different lectins in different aspects of cancer and any resulting applications. An integrated knowledge base (CancerLectinDB) together with appropriate analytical tools has therefore been developed for lectins relevant for any aspect of cancer, by collating and integrating diverse data. This database is unique in terms of providing sequence, structural, and functional annotations for lectins from all known sources in cancer and is expected to be a useful addition to the number of glycan related resources now available to the community. The database has been implemented using MySQL on a Linux platform and web-enabled using Perl-CGI and Java tools. Data for individual lectins pertain to taxonomic, biochemical, domain architecture, molecular sequence and structural details as well as carbohydrate specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value for various studies on lectin cancer biology. CancerLectinDB can be accessed through . Availability: CancerLectinDB is available freely for academic use from , Contact nchandra@serc.iisc.ernet.in for further information.  相似文献   

11.
The extensive germplasm resource collections that are now available for major crop plants and their wild relatives will increasingly provide valuable biological and bioinformatics resources for plant physiologists and geneticists to dissect the molecular basis of key traits and to develop highly adapted plant material to sustain future breeding programs. A key to the efficient deployment of these resources is the development of information systems that will enable the collection and storage of biological information for these plant lines to be integrated with the molecular information that is now becoming available through the use of high-throughput genomics and post-genomics technologies. The GERMINATE database has been designed to hold a diverse variety of data types, ranging from molecular to phenotypic, and to allow querying between such data for any plant species. Data are stored in GERMINATE in a technology-independent manner, such that new technologies can be accommodated in the database as they emerge, without modification of the underlying schema. Users can access data in GERMINATE databases either via a lightweight Perl-CGI Web interface or by the more complex Genomic Diversity and Phenotype Connection software. GERMINATE is released under the GNU General Public License and is available at http://germinate.scri.sari.ac.uk/germinate/.  相似文献   

12.
The availability of user‐friendly software to annotate biological datasets and experimental details is becoming essential in data management practices, both in local storage systems and in public databases. The Ontology Lookup Service (OLS, http://www.ebi.ac.uk/ols ) is a popular centralized service to query, browse and navigate biomedical ontologies and controlled vocabularies. Recently, the OLS framework has been completely redeveloped (version 3.0), including enhancements in the data model, like the added support for Web Ontology Language based ontologies, among many other improvements. However, the new OLS is not backwards compatible and new software tools are needed to enable access to this widely used framework now that the previous version is no longer available. We here present the OLS Client as a free, open‐source Java library to retrieve information from the new version of the OLS. It enables rapid tool creation by providing a robust, pluggable programming interface and common data model to programmatically access the OLS. The library has already been integrated and is routinely used by several bioinformatics resources and related data annotation tools. Secondly, we also introduce an updated version of the OLS Dialog (version 2.0), a Java graphical user interface that can be easily plugged into Java desktop applications to access the OLS. The software and related documentation are freely available at https://github.com/PRIDE-Utilities/ols-client and https://github.com/PRIDE-Toolsuite/ols-dialog .  相似文献   

13.
Proteins play crucial roles in every cellular process by interacting with each other, nucleic acids, metabolites, and other molecules. The resulting assemblies can be very large and intricate and pose challenges to experimental methods. In the current era of integrative modeling, it is often only by a combination of various experimental techniques and computations that three-dimensional models of those molecular machines can be obtained. Among the various computational approaches available, molecular docking is often the method of choice when it comes to predicting three-dimensional structures of complexes. Docking can generate particularly accurate models when taking into account the available information on the complex of interest. We review here the use of experimental and bioinformatics data in protein-protein docking, describing recent software developments and highlighting applications for the modeling of antibody–antigen complexes and membrane protein complexes, and the use of evolutionary and shape information.  相似文献   

14.
Taverna: a tool for the composition and enactment of bioinformatics workflows   总被引:12,自引:0,他引:12  
MOTIVATION: In silico experiments in bioinformatics involve the co-ordinated use of computational tools and information repositories. A growing number of these resources are being made available with programmatic access in the form of Web services. Bioinformatics scientists will need to orchestrate these Web services in workflows as part of their analyses. RESULTS: The Taverna project has developed a tool for the composition and enactment of bioinformatics workflows for the life sciences community. The tool includes a workbench application which provides a graphical user interface for the composition of workflows. These workflows are written in a new language called the simple conceptual unified flow language (Scufl), where by each step within a workflow represents one atomic task. Two examples are used to illustrate the ease by which in silico experiments can be represented as Scufl workflows using the workbench application.  相似文献   

15.
近年来生物学领域的研究不断达到新高度,聚糖逐渐吸引越来越多科学家的目光,很多研究表明聚糖具有多种生物活性,越来越多的相关科研人员开始关注聚糖在生命过程中的作用及其机制。糖生物学逐渐成为生物学领域的热点学科。对于拟从事糖生物学研究或者刚进入该领域的新人来说,GlyCosmos作为一种全面的、统一的糖科学开放门户网站,其数据免费向大众公开,提供了对聚糖相关数据的访问,包括存储库,糖原、糖蛋白、信号通路和疾病相关的各种数据库及Glycome多种可视化数据库,目前最为前沿和统一的多种标准化多糖表示方法及其他多种功能。该网站是近两年才建成,但目前已被广泛使用也被糖生物学家所熟知。本文就GlyCosmos门户网站中的各项功能进行概述,希望帮助拟从事糖生物学研究的新人更好地了解和利用该网站,对于该网站的学习和理解,会对后续从事聚糖相关研究的研究者起到极大的帮助作用,也使后续研究更加便捷。  相似文献   

16.
The explosive growth of the bioinformatics field has led to a large amount of data and software applications publicly available as web resources. However, the lack of persistence of web references is a barrier to a comprehensive shared access. We conducted a study of the current availability and other features of primary bioinforo matics web resources (such as software tools and databases). The majority (95%) of the examined bioinformatics web resources were found running on UNIX/Linux operating systems, and the most widely used web server was found to be Apache (or Apache-related products). Of the overall 1,130 Uniform Resource Locators (URLs) examined, 91% were highly available (more than 90% of the time), while only 4% showed low accessibility (less than 50% of the time) during the survey. Furthermore, the most common URL failure modes are presented and analyzed.  相似文献   

17.
Glycosylation is one of the most common post-translational modifications of proteins and has been shown to change with various pathological states including cancer. Global glycan profiling of human serum based on mass spectrometry has already led to several promising markers for diseases. The changes in glycan structure can result in altered monosaccharide composition as well as in the linkages between the monosaccharides. High-throughput glycan structural elucidation is not possible because of the lack of a glycan template to expedite identification. In an effort toward rapid profiling and identification of glycans, we have constructed a library of structures for the serum glycome to aid in the rapid identification of serum glycans. N-Glycans from human serum glycoproteins are used as a standard and compiled into a library with exact structure (composition and linkage), liquid chromatography retention time, and accurate mass. Development of the library relies on highly reproducible nanoLC-MS retention times. Tandem MS and exoglycosidase digestions were used for structural elucidation. The library currently contains over 300 entries with 50 structures completely elucidated and over 60 partially elucidated structures. This database is steadily growing and will be used to rapidly identify glycans in unknown biological samples.  相似文献   

18.
19.
GlycoSuiteDB is a relational database that curates information from the scientific literature on glyco-protein derived glycan structures, their biological sources, the references in which the glycan was described and the methods used to determine the glycan structure. To date, the database includes most published O:-linked oligosaccharides from the last 50 years and most N:-linked oligosaccharides that were published in the 1990s. For each structure, information is available concerning the glycan type, linkage and anomeric configuration, mass and composition. Detailed information is also provided on native and recombinant sources, including tissue and/or cell type, cell line, strain and disease state. Where known, the proteins to which the glycan structures are attached are reported, and cross-references to the SWISS-PROT/TrEMBL protein sequence databases are given if applicable. The GlycoSuiteDB annotations include literature references which are linked to PubMed, and detailed information on the methods used to determine each glycan structure are noted to help the user assess the quality of the structural assignment. GlycoSuiteDB has a user-friendly web interface which allows the researcher to query the database using mono-isotopic or average mass, monosaccharide composition, glycosylation linkages (e.g. N:- or O:-linked), reducing terminal sugar, attached protein, taxonomy, tissue or cell type and GlycoSuiteDB accession number. Advanced queries using combinations of these parameters are also possible. GlycoSuiteDB can be accessed on the web at http://www.glycosuite.com.  相似文献   

20.
Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号