首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted to determine how 1‐methylcyclopropene (1‐MCP) treatments influence ethylene‐stimulated ripening of harvested mango cv. Zihua fruit at 20°C. The ripening response of fungicide (prochloraz) treated fruit was characterised following various 1‐MCP treatments in sealed jars followed by storage in polyethylene bags and/or subsequent ethephon (ethylene) exposure. Exposure of fruit to increasing concentrations of 1‐MCP for 12 h resulted in the reduced softening of produce when subsequently held in air for 7 days after ethephon treatment. Application levels of between 1 and 100 μl litre?1 1‐MCP had increasing impact, while 200 μl litre?1 1‐MCP apparently began to approach response saturation. Exposure of fruit to 50 or 100 μl litre?1 concentrations of 1‐MCP for periods from 1 to 24 h subsequently resulted in reduced softening of produce when held in air for 7 days after ethephon treatment. Increasing periods of exposure from 1 to 12 h had increasing impact, while exposure times greater that 12 h appeared to reach saturation. In the absence of ethephon‐stimulation, the natural ripening of mangoes held in polyethylene bags was delayed by prior exposure to 100 μl litre?1 1‐MCP for 12 h. Extended holding of 1‐MCP treated and non‐1‐MCP treated control fruit in polyethyene bags encouraged physiological and pathological deterioration. Following exposure to 100 μl litre?1 1‐MCP for 12 h, mango fruit held for 10 days in polyethylene bags showed a delay in the onset of ripening relative to bagged but non‐1‐MCP treated control fruit. Treatment with 1‐MCP allowed storage of mango fruit in plastic bags at 20°C for 30 days. Observations suggest that 1‐MCP treatments do not adversely influence the quality of the post‐storage ethephon‐ripened fruit. Thus, application of 1‐MCP in combination with the use of polyethylene bags can extend the postharvest life of mango fruit at ambient temperature. Treatments that extend postharvest life are important in developing countries, such as China, where the cold chain infrastructure is often lacking.  相似文献   

2.
Osmotic priming of carrot seeds for 2 wk in polyethylene glycol (PEG, — 10 MPa) at 15 °C led to more rapid and synchronous germination at 20 °C compared to untreated seeds. These responses were enhanced by a 24 h pre-priming soak in water or a change of solution after the first 24 h of priming to remove leachate. The inclusion of 200 mg litre-1N-substituted phthalimide in the pre-priming soak and/or in the PEG further enhanced the results of priming. Leachate removal combined with phthalimide inclusion gave 79% and 86% germination from seeds of two carrot cultivars during the first day in 20°C water following priming. In contrast, cumulative germination of untreated seeds of the same cultivars was 18% and 61% respectively after 3 days in 20°C water. Seeds primed in PEG containing 200 mg phthalimide litre-1with the solution replaced after the first 24 h germinated earlier and more synchronously than untreated seeds over a range of germination temperatures (5, 10, 15, or 20°C), but the effects of priming were most marked at 5°C.  相似文献   

3.
Mangoes (var. Tommy Atkins) were exposed to ethylene and acetylene over a range of concentrations at high humidity for 24 h at 25°C, then ripened in air alone. Ripeness was assessed after 4 and 8 days by analysis of texture, colour development, soluble solids and acid contents. Ethylene in air at concentrations of 0.01 ml litre-1 and above or acetylene at 1.0 ml litre-1 were found to initiate ripening. Treatment with 0.01 ml litre-1 acetylene resulted in limited softening but had no effect on the other ripening changes analysed. Individual ripening processes responded differently to treatment: texture changes were most rapidly affected, while the rate of acidity losses was often reduced in ethylene treated fruits. Acetylene-treated fruits at concentrations of 0.01 and 0.1 ml litre-1 showed delayed ripening when compared to those treated with either 1.0 ml litre-1 acetylene or ethylene. Increased acetylene concentrations of 2.0 ml litre-1 gave a similar response to 1.0 ml litre-1, although in some instances there were indications of inhibitory effects.  相似文献   

4.
The effect of ethylene concentration on chlorophyll destruction in orange (Citrus sinensis cV. Washington Navel) fruits was examined at 15 °C and 25 °C. The reflectance of the fruits at 680 nm was measured, and the results converted to chlorophyll concentrations through an empirically derived formula based on the Kubelka-Munk equation. In all ethylene treatments chlorophyll destruction was faster at 25 °C than at 15 °C and all ethylene concentrations tested increased the rate of loss at 25 °C. At 15 °C the highest rate of chlorophyll destruction was observed at 1 μl litre-1 ethylene, while chlorophyll loss at 1250 μl litre-1 was slower than in untreated fruits.  相似文献   

5.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

6.
Three potential chemical fumigants: carbonyl sulfide (COS), methyl iodide (MI) and sulfuryl fluoride (SF) were tested at selected dosages on lemons against California red scale (Aonidiella aurantii) and MI and COS were tested on nectarines against codling moth (Cydia pomonella). In nectarines, COS was tested at 0, 20, 40, 60 and 80 mg litre?1, MI at 0, 10, 15, 20 and 25 mg litre?1. Both fumigants intensified nectarine peel color, delayed fruit softening, but did not alter overall fruit quality. COS at 80 mg litre?1 resulted in 87% codling moth mortality, but the fumigant dosage was insufficient to reach the desired probits 9 level (99.9968%). MI gave 100% codling moth mortality at 25 mg litre?1. Lemons were treated with MI at 0,10,20,40,60 mg litre?1, SF at 0,10,20,40, 80 mg litre?1 and COS at 0,20,40, 60 and 80 mg litre?1. MI gave 100% red scale mortality at ≥40 mg litre?1 but caused significant fruit injury. Conditioning lemons at 15°C for 3 days before MI fumigation lessened lemon phytotoxicity. Forced aeration at 3.5 standard litres per minute of lemons for 24 h following MI fumigation at 20 mg litre?1 significantly reduced phytotoxicity compared to 2 h postfumigation aeration after MI treatment. SF at ≥40 mg litre?1 gave 100% red scale mortality but resulted in commodity phytotoxicity. Lemons treated with the highest selected dose of 80 mg litre?1 COS gave only 87% kill of red scale, but failed to reach the desired probit 9 level.  相似文献   

7.
Unripe bananas were exposed to 1 ml litre-1 of acetylene gas in air for different periods of time and different temperatures and then ripened at 20°C. It was found that exposure of fruits to acetylene for 4 h at 20 , 25 and 30°C, or 8 h at 20°C did not initiate ripening. Some fruits which had been exposed to acetylene for 4 h at 35°C or 8 h at 25°C and all fruit exposed for 8 h at 30° and 35°C ripened. These results indicate that bananas became more sensitive to ripening by acetylene as temperatures increased within the range of 20 to 35°C.  相似文献   

8.
Potted Cabernet Sauvignon grapevines were acclimated to two different temperature regimes (25°C/15°C and 35°C/25°C day/night temperatures, respectively) until 100% bloom, when the vines were treated with either 0, 250, 500, or 750 ppm ethephon (Ethrel®). Three days after ethephon application all vines were combined and held at 25°C/15°C in a phytotron room for 15 weeks. Growth was suppressed by a greater range of ethephon concentrations at the cool temperature, but effects were shorter-lived than at the high temperature. Generally, the 500 ppm treatment reduced vigor most effectively. The degree to which ethephon influences vine growth is mediated by temperature. Ethephon and temperature treatments caused significant differences in the concentrations of potassium, calcium, and magnesium in leaves.  相似文献   

9.
Preservation of algal spores of the green seaweed Ulva fasciata and U. pertusa was enhanced by the addition of ampicillin in f/2 medium at 4°C. The viability of preserved spores was determined by a spore germination assay at various time intervals. The germination rate of U. fasciata remained at 5% to 38% for the first five days, dropping to 1% to 6% on the 10th day of storage with various preservation treatments without ampicillin at 4°C during parameter-selecting experiments. In f/2 medium, 53% of U. fasciata spores were still viable on day 5 and 23% on day 10 at 4°C. By adding 100 μg mL−1 ampicillin to f/2 medium, 90% of the spores were viable at day 40 and 61% after 100 days of storage at 4°C. Spores of U. pertusa had lower preservation rates, with viabilities of 70% at day 40 and 32% at day 100. Algal spore preservation was heavily dependent on the bacterial contamination and subsequent degradation in stock solutions. Handling editor: L. Naselli-Flores  相似文献   

10.
Dormant Amaranthus retroflexus seeds do not germinate in the dark at temperatures below 35°C. Fully dormant seeds germinate only at 35–40°C whereas non-dormant ones germinate within a wider range of temperatures (15 to 40°C). Germination of non-dormant seeds requires at least 10% oxygen, but the sensitivity of seeds to oxygen deprivation increases with increasing depth of dormancy. 10–6 to 10–4 M ethephon, 10–3 M 1-aminocyclopropane 1-carboxylic acid (ACC) and 10–3 M gibberellic acid (GA3) break this dormancy. In the presence of 10–3 M GA3 dormant seeds are able to germinate in the same range of temperatures as non-dormant seeds. The stimulatory effect of GA3 is less dependent on temperature than that of ethephon, while ACC stimulates germination only at relatively high temperatures (25–30°C). The results obtained are discussed in relation to the possible involvement of endogenous ethylene in the regulation of germination of A. retroflexus seeds.Abbreviations ACC 1-aminocyclopropane 1-carboxylic acid - GA3 gibberellic acid - SD standard deviation  相似文献   

11.
Basidiospore germination in an ectomycorrhizal ammonia fungus Hebeloma vinosophyllum was stimulated by 10–500 mM NH4Cl aqueous solution at pH 4.5–9.0, but not by pure water. The basidiospores germinated at 10°–35°C with an optimum at 25°–30°C. The highest germination percentage (83.0%) was observed in 100 mM NH4Cl aqueous solution adjusted to pH 8.0 by KOH, when the basidiospores were incubated at a density of 106 spores/ml at 30°C for 14 days. The percent germination value decreased with the increased duration of storage under both dry and wet conditions. Humidity and temperature affected the longevity of H. vinosophyllum basidiospores. The basidiospores maintained their germination ability longer under a dry condition than under a wet condition. The greatest longevity was accomplished by storage at 15°C under a dry condition.  相似文献   

12.
Peach flowers are often killed during bloom by spring frosts. LAB 173711, a compound with abscisic (ABA)-like activity, and ethephon delayed flowering in peach trees. In greenhouse experiments, LAB 173711, at concentrations of 10?3–10?2 M, was most effective in delaying bloom when applied after a 5°C cold storage period, rather than before the dormancy breaking treatment. In contrast, ethephon delayed bloom most effectively when applied before 5°C cold storage; ethephon caused flower bud abscission when treatments were made after the chilling requirement had been satisfied. In field experiments, ethephon delayed flowering by 6–7 days, which reduced bud injury after a spring frost during bloom. No flower bud injury was found on ethephon-treated trees after temperatures of ?4.3°C; whereas without ethephon 25% of the flower buds were frost damaged. LAB 173711 delayed the time to 50% bloom by 2–3 days. However, this was not long enough to avoid low-temperature injury to the flower buds.  相似文献   

13.
Experiments were carried out with three seed lots of Betula nana collected in 1967 from different localities in Norway. Seeds were stratified for 0-20 days in dark at +2-+3 °C on filter papers moistened with distilled water, or treated with solution of GA3 for 24 h at room temperature, and then moved into special germination boxes that were placed in different temperature conditions. All the seed lots had conditional dormancy. Quantitatively, the dormancy was different in the different seed lots (pronenances), but there were no qualitative difference in the reaction to stratification gibberellic acid and to germination temperature. Differences between seed lots may have been due to different stage of seed development. The dormancy was deepest at low temperatures(12 and 15°C) decreasing gradually with increasing temperature (to 24 °C). The dormancy was effectively broken by a short stratification (from 5 to 15 days), and by treatment with gibberellic acid. The deeper the dormancy and the lower the germination temperature the longer the stratification that was needed for maximum germination. Similarly, the concentration of GA3 needed for maximum germination increased with decreasing temperature and with increasing dormancy.  相似文献   

14.
Artemisia sphaerocephala is widely used for vegetation rehabilitation, but its germination is very low after air seeding of achenes. We explored effects of light, temperature and water stress on germination. Results show that both final percent germination and germination rate were increased by temperature increment, with the highest values occurring at 15: 25°C (night: day) in dark and 20: 30°C under light. Light inhibited germination, especially at lower alternating temperatures (5: 15°C and 10: 20°C). The alternating temperature window for germination was slightly narrower under light than in dark, and germination was slower under light than in dark across the temperature range. Achenes incubated in the dark and at constant temperatures had over 80% germination at 10 to 25°C, with an optimum at 20°C. Under dark and 25μmol m‐2 s‐1 light flux density at 10: 20°C, final percent germination was over 94%, but if the light flux density was increased to 100 and 400 μmol m‐2 s‐1, final percent germination was significantly lower (64% and 38% respectively). However, achenes could keep their germination capacity for a long time (over 50 days) and germinate well after going back to the dark. Germination was also lower under water stress and few achenes germinated at ‐1.4 MPa. This was more pronounced at high and low temperatures. Given these findings and the prevailing climatic characteristics, the most suitable time for air seeding of achenes may be mid‐May.  相似文献   

15.
Blastospores of three strains of Metarhizium anisopliae were stored in 18 liquids at 4°C, 20°C and 35°C for 18 weeks, 12 weeks or 9 days respectively. Viability was quantified by determination of their germination. In bioassays the virulence of stored blastospores was studied using adults and third instars of Locusta migratoria migratorioides (R. & F.) and compared to those of freshly produced blastospores and conidia. Generally, there was great variability in the viability of blastospores, depending on the fungal strain and the liquids used. Blastospores survived best at 4°C in 10% hydroxyethyl starch; for example, germination of M. anisopliae strain 97 still amounted to more than 80% after storage for 18 weeks. Other suitable liquids were deionized water, 25% Ringer's solution and 1% sodium alginate. The viability of blastospores stored at 20°C was considerably shorter than at 4°C. During storage for 12 weeks at 20°C the best protective liquids for M. anisopliae strain 97 were 25% Ringer's solution (43% germination), deionized water (23%) and 10% hydroxyethyl starch (23%). At 35°C, 45% of M. anisopliae strain 97 blastospores still germinated after storage for 7 days in 25% glycerol. The bioassays revealed that the virulence of blastospores after storage was comparable to that of fresh ones and even better than that of fresh conidia. In general, the LT50 was about 4–6 days at an alternating day/night temperature of 28/20°C.  相似文献   

16.
Studies were conducted to determine the influence of temperature and relative humidity (RH) on germinability and viability of Mucor piriformis spores. Spores did not survive when stored at 35 °C and their survival rate decreased rapidly at 30 °C; however, spores remained viable for more than 1 year at 0 °C. RH also significantly affected spore viability. Spores held at 26 °C and 100% RH no longer germinated after 35 days, while those held at 75 or 90% RH germinated for 65 days. At 20 °C, RH had little effect on spore germinability. The effect of temperature and RH on percentage spore germination also varied. At all temperatures studied, spore viability decreased more rapidly with time at 100% RH than at 75 or 90% RH. The least favorable, temperature-humidity combination, 30 °C and 100% RH, decreased spore germination from 100% to less than 1% in 14 days.  相似文献   

17.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

18.
The specific inhibitor of gibberellin biosynthesis, (2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol), inhibited germination ofAmaranthus caudatus L. seeds. Addition of gibberellic acid (GA3), 2-chloroethylphosphonic acid (ethephon), or 1-aminocyclopropane-1-carboxylic acid (ACC) effectively antagonized inhibition. Ethephon was found to be the most efficient antagonist. The transfer of seeds after 1 day's incubation in paclobutrazol to solutions of GA3 or ethephon reversed the inhibition, the effect increasing with increasing concentration of GA3 or ethephon. Seeds incubated in paclobutrazol for 5 days decreased sensitivity to GA3 and ethephon.  相似文献   

19.
Abstract. To understand overwintering of the cotton boll worm Helicoverpa armigera, cold hardiness and sugar content are compared between diapausing and nondiapausing pupae. Diapausing and nondiapausing pupae reared at 20 °C under short and long photoperiods are acclimatized with a reduction of 5 °C per 5 days to 0 °C. When the acclimation temperature reaches 0 °C, the survival of diapausing pupae is assessed. The survival gradually decreases as the period of treatment progresses and approximately half survive for 112 days. However, nondiapausing pupae survive only 14 days after exposure to 0 °C. The surpercooling points of nondiapausing, diapausing and acclimatized pupae are approximately −17 °C. The major sugars contained in pupae are trehalose and glucose. Even though trehalose contents in diapausing pupae (initial level: 0.6 mg 100 mg−1 fresh weight) increase significantly during cold acclimation and continue increasing until 58 days after exposure to 0 °C (maximum level: 1.8 mg 100 mg−1), glucose is maintained at low levels (0.02 mg 100 mg−1) for 56 days at 0 °C. However, glucose contents increase (maximum level: 0.8 mg 100 mg−1) with decreasing contents of trehalose 84 days after exposure to 0 °C. Glycogen content gradually decreases during cold acclimation. When nondiapausing pupae are acclimatized with a reduction of 5 °C per 5 days to 5 °C from the beginning of pupation until the eyespots move, trehalose content increases (maximum level: 1.0 mg 100 mg−1). Glucose contents in nondiapausing pupae increase before eclosion (0.09 mg 100 mg−1). From these results, diapausing pupae of H. armigera can overwinter in regions where average winter temperatures are higher than 0 °C, but nondiapausing pupae cannot.  相似文献   

20.
  • Anogeissus leiocarpa (DC.) Guill. & Perr. (Combretaceae) has important economic and cultural value in West Africa as source of wood, dye and medicine. Although this tree is in high demand by local communities, its planting remains limited due to its very low propagation via seed.
  • In this study, X‐rays were used to select filled fruits in order to characterise their morphology and seed germination responses to treatment with sulphuric acid and different incubation temperatures.
  • Morphological observations highlighted a straight orthotropous seed structure. The increase in mass detected for both intact and scarified fruits through imbibition tests, as well as morphological observations of fruits soaked in methylene blue solution, confirmed that they are water‐permeable, although acid‐scarified fruits reached significantly higher mass increment values than intact ones. Acid scarification (10 min soaking in 98% H2SO4) positively affected seed germination rate but not final germination proportions. When intact fruits where incubated at a range of temperatures, no seeds germinated at 10 °C, while maximum seed germination (ca. 80%) was reached at 20 °C. T50 values ranged from a minimum of ca. 12 days at 25 °C to a maximum of ca. 34 days at 15 and 35 °C. A theoretical base temperature for germination (Tb) of ca. 10 °C and a thermal requirement for 50% germination (S) of ca. 195 °Cd were also identified for intact fruits.
  • The results of this study revealed the seed germination characteristics driven by fruit and seed morphology of this species, which will help in its wider propagation in plantations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号