首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: Apoptosis plays a pivotal role in the regulation of immune mechanisms in the pathogenesis of autoimmune thyroid diseases (AITD). The prevalence of AITD increases with age. Purpose to compare soluble Fas, FasL and Bcl-2 in Graves disease (GD) and Hashimoto thyroiditis (HT) in relation to the age of the studied patients. MATERIAL AND METHODS: 3 groups of subjects: 1/25 patients with GD in euthyreosis on methimazol 2/27 patients with ChH in euthyreosis on levothyroxine. 3/12 healthy volunteers age and sex-matched to group 1-2. The serum levels of Fas, FasL and Bcl-2 were determined by the ELISA kit. RESULTS: We found positive correlations between sFas and age in GD patients (r = 0.35; p < 0.05). In GD patients we found a negative correlation between sFasL and age in all studied patients with AITD (r = -0.34; p < 0.01). We also found a negative correlation between sBcl-2 and age in HT patients (r = -0.42; p < 0.05). CONCLUSIONS: Fas/FasL and Bcl-2 signaling pathways seem to be age-related and may explain, at least in part, milder course of Graves disease in elderly patients and increased prevalence of Hashimoto disease in this group of subjects.  相似文献   

2.
Previous reports support that lysophosphatidic acid (LPA) upregulates Fas ligand (FasL) cell surface presentation on the ovarian cancer cells. In this study, we aim to investigate soluble FasL (sFasL) secretion associated with the small membrane microvesicles upon LPA stimulation, and to analyze the roles of cytoskeletal reorganization in FasL transport induced by LPA. Ovarian cancer cells were stimulated with LPA and spent media were harvested, concentrated, and ultracentrifugated to collect the supernatant and pellet. Western blot suggested that sFasL released from ovarian cancer cells were the mature form, and these sFasL are released with the small membrane microvesicles. Flow cytometry showed that the majority of microvesicles secreted contained FasL on their membrane, and these small membrane microvesicles are bioactive against activated human T lymphocytes. The microtubule-disrupting reagent nocodazole, not the actin-filament-disrupting reagent cytochalasin D pretreatment blocked FasL-expressing small membrane microvesicle release stimulated by LPA, suggesting that microtubules play an essential role in FasL microvesicle transport and exocytosis. LPA may promote ovarian cancer metastasis by counterattacking peritoneal cavity anti-tumor immunity.This work was supported by NCI UO1CA85133, NCI P50 CA83639, NIH R01 CA89503, NIH-RO1CA82562, and NIH RO1 CA01015.  相似文献   

3.
It is commonly accepted that apoptosis plays an important role in the death of normal and neoplastic cells. Related proteins and their receptors on cell surfaces regulate apoptosis. One of the best-characterized systems is the Fas-Fas ligand system. The aim of the study was to examine the concentrations of soluble Fas receptor (sFas) and the soluble ligand for the Fas receptor (sFasL) in serum of women with uterine tumors.The study included 42 women with uterine tumors. As a normal control, sera were obtained from 20 healthy female volunteers. The concentrations of sFas and sFasL in serum were measured by enzyme-linked immunosorbent assay ELISA.Significant increases of the mean value of sFas and sFasL were found in the serum of women with uterine tumor compared to the control group (p < 0.0001). The mean levels of these parameters increased in consecutive stages of the clinical extent of the uterine cancer (I-III). The lowest concentration was observed in women with stage I and the highest in women with stage III of clinical extent according to FIGO.Apoptosis that appears to occur in the cancerous cells of malignant uterine tumors is associated with high levels of sFas and sFasL in serum.  相似文献   

4.
The Fas/Fas Ligand (FasL) system and survivin have counteracting roles in cell survival. Therefore, we explored the role of circulating soluble Fas (sFas) and the tissue levels of Fas and survivin with regard to response to chemotherapy in lung cancer patients. Serum samples from 52 lung cancer patients and 54 control subjects (19 benign lung disease and 35 healthy control subjects) were collected prior to and 24 and 48 h after chemotherapy. sFas was statistically significantly higher in the cancer group than that in the control groups (p < 0.001). Baseline (before chemotherapy) sFas values showed a statistically significant inverse correlation with overall survival (r = ?0.599, p < 0.001). There was a significant increase in serum sFas levels 24 h after treatment (p < 0.05). Contrarily, tissue levels of Fas and survivin were not changed following the chemotherapy (p > 0,05). In conclusion, increased sFas may be an indicator of poor outcome in lung cancer patients. However, cisplatin‐based chemotherapy may not be effective via neither the Fas/FasL system nor survivin pathway. Indeed, larger sample size is required for further evaluation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
BACKGROUND: The Fas ligand/Fas receptor (FasL/Fas) system is an important mediator of apoptosis in the immune system where the juxtaposition of cells expressing the cell-surface ligand induces the apoptotic pathway in Fas-expressing lymphocytes. The FasL/Fas system has also been shown to be involved in apoptosis in epithelial tissues, including the involuting rodent prostate. FasL can be shed through the action of an hitherto unidentified metalloproteinase to yield soluble FasL (sFasL), although the biological activity of sFasL has been disputed. RESULTS: Here we report that the matrix metalloproteinase matrilysin can process recombinant and cell-associated FasL to sFasL, and that matrilysin-generated sFasL was effective at inducing apoptosis in a target epithelial cell population. In the involuting mouse prostate, FasL and matrilysin colocalized to the cell surface in a restricted population of epithelial cells. Mice deficient in matrilysin demonstrated a 67% reduction in the apoptotic index in the involuting prostate compared with wild-type animals, implicating matrilysin in this FasL-mediated process. CONCLUSIONS: The results show that a functional form of sFasL was generated by the action of the metalloproteinase matrilysin, and suggest that matrilysin cleavage of FasL is an important mediator of epithelial cell apoptosis.  相似文献   

6.
The goals of this study were to determine whether the Fas-dependent apoptosis pathway is active in the lungs of patients with the acute respiratory distress syndrome (ARDS), and whether this pathway can contribute to lung epithelial injury. We found that soluble Fas ligand (sFasL) is present in bronchoalveolar lavage (BAL) fluid of patients before and after the onset of ARDS. The BAL concentration of sFasL at the onset of ARDS was significantly higher in patients who died. BAL from patients with ARDS induced apoptosis of distal lung epithelial cells, which express Fas, and this effect was inhibited by blocking the Fas/FasL system using three different strategies: anti-FasL mAb, anti-Fas mAb, and a Fas-Ig fusion protein. In contrast, BAL from patients at risk for ARDS had no effect on distal lung epithelial cell apoptosis. These data indicate that sFasL is released in the airspaces of patients with acute lung injury and suggest that activation of the Fas/FasL system contributes to the severe epithelial damage that occurs in ARDS. These data provide the first evidence that FasL can be released as a biologically active, death-inducing mediator capable of inducing apoptosis of cells of the distal pulmonary epithelium during acute lung injury.  相似文献   

7.
Fas (CD95/Apo-1) exists both in membrane-bound and in biologically active soluble (s) forms. Ligation of membrane-expressed Fas can induce apoptosis, and Fas-mediated signaling seems to be involved in T-cell-induced apoptosis of human acute myelogenous leukemia (AML) blasts. The local release of sFas by AML blasts may then function as a protective mechanism by competing with membrane-bound Fas for binding sites on the common Fas ligand (FasL). sFas was released by AML blasts during in vitro culture, and this release was modulated by several cytokines that can be secreted by activated T cells. Increased levels of sFas could be detected during in vitro activation of T cells in the presence of native AML accessory cells, and this was observed both for (i) mitogenic activation of CD4+ and CD8+ T cell clones derived from acute leukemia patients with therapy-induced leukopenia and (ii) allostimulated activation of T cells derived from normal donors. However, local in vivo levels of sFas will also be influenced by variations in systemic levels. High serum levels of sFas were detected in acute leukemia patients during chemotherapy-induced cytopenia, but these levels decreased during complicating bacterial infections. In contrast, serum levels of sFasL were normal in leukopenic patients. The present results support the hypothesis that local release of sFas can function as a protective mechanism against AML-reactive T cells, but the effects of this local release are, in addition, modulated by variations in systemic levels of sFas (but not sFasL). Received: 9 March 2000 / Accepted: 25 May 2000  相似文献   

8.
The study's objective was to assess the expressions of Fas and FasL proteins in gastric cancer in correlation with chosen clinicohistological parameters. Fas and FasL expression was analyzed in 68 patients with gastric cancer, using the immunohistochemical method. The expression of Fas was found to be lower in gastric cancer cells than in healthy mucosa, both in the lining epithelium and in glandular tubes (28% vs. 48% and 44%; p < 0.001). The expression of FasL was also markedly lower in cancer cells than in glandular tubes, yet higher than in the lining epithelium (51% vs. 73% and 14%; p < 0.01). Positive expressions of FasL and Fas were lower in less advanced gastric cancer cells (T1, T2), than in more advanced tumors (T3, T4), but only in the case of FasL was this difference statistically significant (p < 0.05). Our findings seem to confirm the theory of the impact of apoptotic disorders at the level of Fas receptor and FasL protein in the process of gastric cancer formation and growth, which is manifested in the varied expressions of these proteins in gastric cancer and in the normal lining and glandular epithelium of the stomach. However, the lack of significant differences in the expressions of Fas and FasL in correlation to other clinicohistological parameters indicates the existence of mechanisms that have a greater impact on the process of differentiation of gastric cancers. This in our opinion eliminates these proteins as prognostic factors.  相似文献   

9.
M Tanaka  T Suda  T Takahashi    S Nagata 《The EMBO journal》1995,14(6):1129-1135
Fas is a type I membrane protein which mediates apoptosis. Fas ligand (FasL) is a 40 kDa type II membrane protein expressed in cytotoxic T cells upon activation that belongs to the tumor necrosis factor (TNF) family. Here, we found abundant cytotoxic activity against Fas-expressing cells in the supernatant of COS cells transfected with human FasL cDNA but not with murine FasL cDNA. Using a specific polyclonal antibody against a peptide in the extracellular region of human FasL, a protein of 26 kDa was detected in the supernatant of the COS cells. The signal sequence of granulocyte colony-stimulating factor was attached to the extracellular region of human FasL. COS cells transfected with the cDNA coding for the chimeric protein efficiently secreted the active soluble form of human FasL (sFasL). Chemical crosslinking and gel filtration analysis suggested that human sFasL exists as a trimer. Human peripheral T cells activated with phorbol myristic acetate and ionomycin also produced functional sFasL, suggesting that human sFasL works as a pathological agent in systemic tissue injury.  相似文献   

10.
The system of membrane receptor Fas and its ligand FasL compose one of the main pathways triggering apoptosis. However, the role of their soluble forms has not been clarified yet. Although sFasL can be converted from the membrane-bound form by matrix metalloproteinases (MMPs), there are no data on relations between sFas/sFasL, MMPs and their tissue inhibitors (TIMPs) in patients on chronic dialysis—neither children nor adults. The aim of our study was to evaluate serum concentrations of sFas, sFasL, and their potential regulators (MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2), in children and young adults chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 19 patients on hemodialysis (HD) and 30 controls were examined. Serum concentrations of sFas, sFasL, MMPs and TIMPs were assessed by ELISA. Median values of sFas, sFasL, sFas/sFasL ratio, MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-2 were significantly elevated in all dialyzed patients vs. controls, the highest values being observed in subjects on HD. A single HD session caused the decrease in values of all parameters to the levels below those seen in children on APD. Regression analysis revealed that MMP-7 and TIMP-1 were the best predictors of sFas and sFasL concentrations. Children and young adults on chronic dialysis are prone to sFas/sFasL system dysfunction, more pronounced in patients on hemodialysis. The correlations between sFas/sFasL and examined enzymes suggest that MMPs and TIMPs take part in the regulation of cell death in the pediatric population on chronic dialysis, triggering both anti- (sFas) and pro-apoptotic (sFasL) mechanisms.  相似文献   

11.
The apoptosis-inducing Fas ligand (FasL) is a type II transmembrane protein that is involved in the downregulation of immune reactions by activation-induced cell death (AICD) as well as in T cell-mediated cytotoxicity. Proteolytic cleavage leads to the generation of membrane-bound N-terminal fragments and a soluble FasL (sFasL) ectodomain. sFasL can be detected in the serum of patients with dysregulated inflammatory diseases and is discussed to affect Fas-FasL-mediated apoptosis. Using pharmacological approaches in 293T cells, in vitro cleavage assays as well as loss and gain of function studies in murine embryonic fibroblasts (MEFs), we demonstrate that the disintegrin and metalloprotease ADAM10 is critically involved in the shedding of FasL. In primary human T cells, FasL shedding is significantly reduced after inhibition of ADAM10. The resulting elevated FasL surface expression is associated with increased killing capacity and an increase of T cells undergoing AICD. Overall, our findings suggest that ADAM10 represents an important molecular modulator of FasL-mediated cell death.  相似文献   

12.
Protection by mild hypothermia has previously been associated with better mitochondrial preservation and suppression of the intrinsic apoptotic pathway. It is also known that the brain may undergo apoptotic death via extrinsic, or receptor-mediated pathways, such as that triggered by Fas/FasL. Male Sprague-Dawley rats subjected to 2 h middle cerebral artery occlusion with 2 h intraischemic mild hypothermia (33°C) were assayed for Fas, FasL and caspase-8 expression. Ischemia increased Fas, but decreased FasL by ∼ 50–60% at 6 and 24 h post-insult. Mild hypothermia significantly reduced expression of Fas and processed caspase-8 both by ∼ 50%, but prevented ischemia-induced FasL decreases. Fractionation revealed that soluble/shed FasL (sFasL) was decreased by hypothermia, while membrane-bound FasL (mFasL) increased. To more directly assess the significance of the Fas/FasL pathway in ischemic stroke, primary neuron cultures were exposed to oxygen glucose deprivation. Since FasL is cleaved by matrix metalloproteinases (MMPs), and mild hypothermia decreases MMP expression, treatment with a pan-MMP inhibitor also decreased sFasL. Thus, mild hypothermia is associated with reduced Fas expression and caspase-8 activation. Hypothermia prevented total FasL decreases, and most of it remained membrane-bound. These findings reveal new observations regarding the effect of mild hypothermia on the Fas/FasL and MMP systems.  相似文献   

13.
The Fas ligand (FasL)/Fas receptor (CD95) pathway is an important mediator of apoptosis in the immune system and can also mediate cancer cell death. Soluble FasL (sFasL), shed from the membrane-bound form of the molecule by a putative metalloproteinase (MP), may function to locally regulate the activity of membrane-bound FasL. Using a replication-defective recombinant adenovirus-expressing FasL (RAdFasL), we identified a variable ability of different carcinoma cells to respond to FasL-induced cytotoxicity and to shed sFasL. Blockade of FasL cleavage with an MP inhibitor significantly enhanced RAdFasL-induced apoptosis suggesting that sFasL may antagonize the effect of membrane-bound FasL. In support of this concept, a recombinant adenovirus expressing a noncleavable form of FasL (RAdD4) was found to be a potent inducer of apoptosis even at very low virus doses. Our results highlight the therapeutic potential of noncleavable FasL as an antitumor agent and emphasize the important role of MP via the production of sFasL in regulating the response of the Fas pathway. Moreover, these findings have general implications for the therapeutic exploitation of TNF family ligands and for the possible impact of MP-based therapies on the normal physiology of Fas/TNF pathways.  相似文献   

14.
Soluble CD95 (Fas) ligand (sFasL) is known to be deficient in transducing signals upon engagement with membrane Fas. Here we report that sFasL tranduces, in synergy with non-cytotoxic anti-Fas monoclonal antibody (mAb), signals for apoptosis and nuclear translocation of the NF-kappaB (p65/p50) heterodimer. Activation of the specific signaling pathways correlates with target Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein expression. Synergy with anti-Fas mAb was demonstrated with a trimeric unit of sFasL bearing a single binding site for Fas trimer. In contrast, membrane-bound FasL as expressed on cell-derived vesicles was fully competent in transducing Fas-mediated signals for apoptosis and NF-kappaB nuclear translocation. We propose a model in which the trimeric sFasL signaling requires target expression of a high focal density of Fas, which is induced by the signaling-incompetent anti-Fas mAb. Membrane-bound FasL induces powerful Fas-mediated signals because it possesses both Fas-focusing and signal-transducing functions.  相似文献   

15.
Wang H  Xu J  Ji X  Yang X  Sun K  Liu X  Shen Y 《Cellular immunology》2005,235(2):117-121
To study the apoptosis of lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients and the possible role of IL-10 in this apoptosis involved in the pathogenesis of SLE, three color fluorescence and flow cytometry were used to investigate the early apoptosis of lymphocyte subsets from freshly separated or cultured peripheral blood mononuclear cells (PBMCs). ELISA was employed to detect the levels of IL-10 in serum and the levels of sFas and sFasL in cultured PBMC supernatants, and the results of sFas and sFasL were confirmed by real-time PCR of Fas and FasL mRNA. The results showed that in cells from SLE patients, the apoptosis of CD3+, CD4+, and CD8+ T cells was distinctly increased, and the percentage of CD4+ cells and the CD4/CD8 ratio was significantly decreased, as compared with normal controls. The apoptosis of T lymphocytes cultured with SLE serum was markedly higher than that of cells cultured with control's serum. Blockade of interleukin-10 (IL-10) activation by an anti-IL-10 antibody reduced the SLE serum induced apoptosis of CD4+ and CD8+ T cells. The levels of sFas and sFasL in the culture supernatant and Fas and FasL mRNA expressions in cultured cells were significantly higher in the SLE serum-cultured groups, but decreased evidently in the presence of the anti-IL-10 antibody. Above findings suggested that SLE cells showed abnormally high apoptosis of T lymphocytes, especially of the CD4+ subpopulation, resulting in a decreased CD4/CD8 ratio. The high percentage of apoptotic T cells in SLE patients may be related to the high levels of IL-10 in SLE serum, as IL-10 may induce the abnormally activated T cells to trigger apoptosis via the Fas-FasL pathway.  相似文献   

16.
The exact role of FasL, and particularly its soluble and membrane-bound forms, in the development of chronic ILDs and lung fibrosis has not been extensively explored. We aimed at analyzing membrane-bound FasL expression on alveolar macrophages (AM) and lymphocytes (AL) as well as soluble FasL (sFasL) levels in bronchoalveolar lavage (BAL) from ILDs patients, incl. pulmonary sarcoidosis (PS), hypersensitivity pneumonitis (HP), silicosis, asbestosis, idiopathic pulmonary fibrosis (IPF), nonspecific interstitial pneumonia (NSIP), and healthy subjects (n = 89, 12, 7, 8, 23, 6, 17, respectively). In IPF, significantly increased percentage of AM FasL(+) and CD8(+)FasL(+) cells as well as sFasL levels in BAL were found. Increased sFasL levels were also observed in HP. NSIP and asbestosis were characterized by higher AM FasL(+) relative number; CD8(+)FasL(+) population was expanded in asbestosis only. There was a significant decline in AL FasL(+) percentage in PS and HP. Vital capacity was negatively correlated with sFasL levels, AM FasL(+) and CD8(+)FasL(+) cell relative count. CD4(+)FasL(+) and CD8(+)FasL(+) percentage strongly correlated with BAL neutrophilia, an unfavorable prognostic factor in lung fibrosis. The concurrent comparative BAL analysis of FasL expression indicates that FasL(+) AM and AL (mainly Tc cells) comprise an important element of the fibrotic process, mostly in IPF. FasL might play a crucial role in other fibrosis-complicated ILDs, like NSIP and asbestosis.  相似文献   

17.
To investigate if severe malarial anemia is associated with specific cytokine overproduction, we evaluated serum levels of soluble Fas ligand (sFasL), tumor necrosis factor (TNF-alpha) and interleukin-10 (IL-10) from three groups of young children with Plasmodium falciparum infection (asymptomatic cases, uncomplicated malaria cases and severe malarial anemia cases), in a hyperendemic area of Gabon. In uncomplicated cases, only TNF levels were significantly (p < 0.001) increased in comparison to asymptomatic cases with P. falciparum infection. High levels of sFasL, TNF-alpha and IL-10 were associated with low hemoglobin concentrations, sFasL levels were significantly higher in children with severe malarial anemia (p < 0.001) as compared to both other groups. The parasite density was positively correlated with IL-10, TNF-alpha and sFasL levels. TNF-alpha and sFasL, but not IL-10 or parasitemia, were independent predictors of hemoglobin concentrations. These results suggest that, in malaria, a specific dysregulation of the cytokine balance may lead to complications such as severe anemia.  相似文献   

18.
Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved   总被引:20,自引:0,他引:20  
Previous reports that diabetogenic lymphocytes did not induce diabetes in nonobese diabetic (NOD)-lpr mice suggested the critical role of Fas-Fas ligand (FasL) interaction in pancreatic beta cell apoptosis. However, recent works demonstrated that FasL is not an effector molecule in islet beta cell death. We addressed why diabetes cannot be transferred to NOD-lpr mice despite the nonessential role of Fas in beta cell apoptosis. Lymphocytes from NOD-lpr mice were constitutively expressing FasL. A decrease in the number of FasL+ lymphocytes by neonatal thymectomy facilitated the development of insulitis. Cotransfer of FasL+ lymphocytes from NOD-lpr mice completely abrogated diabetes after adoptive transfer of lymphocytes from diabetic NOD mice. The inhibition of diabetes by cotransferred lymphocytes was reversed by anti-FasL Ab, indicating that FasL on abnormal lymphocytes from NOD-lpr mice was responsible for the inhibition of diabetes transfer. Pretreatment of lymphocytes with soluble FasL (sFasL) also inhibited diabetes transfer. sFasL treatment decreased the number of CD4+CD45RBlow cells and increased the number of propidium iodide-stained cells among CD4+CD45RBlow cells, suggesting that sFasL induces apoptosis on CD4+CD45RBlow "memory" cells. These results resolve the paradox between previous findings and suggest a new role for FasL in the treatment of autoimmune disorders. Our data also suggest that sFasL is involved in the deletion of potentially hazardous peripheral "memory" cells, contrary to previous reports that Fas on unmanipulated peripheral lymphocytes is nonfunctional.  相似文献   

19.
Hsu YL  Kuo PL  Lin CC 《Life sciences》2004,75(10):1231-1242
Saikosaponin D is a saponin extract derived from several species of Bupleurum (Umbelliferae), which is used for the treatment of various liver diseases in traditional Chinese medicine. In this study, we report that Saikosaponin D inhibits the cell growth of human lung cancer cell line A549 and provide a molecular understanding of this effect. The results showed that Saikosaponin D inhibited the proliferation of A549 by inducing apoptosis and blocking cell cycle progression in the G1 phase. ELISA assay showed that Saikosaponin D significantly increased the expression of p53 and p21/WAF1 protein, contributing to cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as Bax protein, was responsible for the apoptotic effect induced by Saikosaponin D. Taken together, our study suggests that the induction of p53 and activity of the Fas/FasL apoptotic system may participate in the antiproliferative activity of Saikosaponin D in A549 cells.  相似文献   

20.
(-)-Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound found in green tea. It has been reported to possess a wide range of pharmacological properties, and is one of the most promising chemopreventive agents for cancer. To provide a better understanding of the preventive effect of EGCG on liver cancer, we examined EGCG for its effect on proliferation and cell cycle progression in a human liver cancer cell line, Hep G2. The results showed that EGCG inhibited the proliferation of Hep G2 by inducing apoptosis and blocking cell cycle progression in the G1 phase. ELISA showed that EGCG significantly increased the expression of p53 and p21/WAF1 protein, and this contributed to cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as Bax protein, was responsible for the apoptotic effect induced by EGCG. Taken together, our study suggests that the induction of p53 and the activity of the Fas/FasL apoptotic system play major roles in the antiproliferative activity of EGCG in Hep G2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号