首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
大豆花叶病毒(SMV,soybean mosaic virus)病是广泛分布于我国各大豆产区的大豆主要病害之一。SMV株系SC13是我国北方大豆产区广泛分布的株系之一。为拓宽大豆对SMV的抗病种质,研究了中国大豆核心种质材料野生大豆ZYD03715对大豆花叶病毒株系SC13的抗性遗传方式,确定与栽培大豆抗源对同一株系的抗性位点间的等位性关系,并对抗性基因进行了标记定位。结果表明:野生大豆抗源ZYD03715对SMV株系SC13的抗性由1对隐性基因控制,广谱抗源科丰1号的抗性受1对显性基因控制,且两个抗源携带的抗性基因是不等位的。采用分离群体组群分析发现,野生大豆ZYD03715对SC13的抗性位点(r~ySC13)位于大豆14号染色体(B2连锁群)上,处于2个SSR标记Satt416和Satt083一侧,与其距离分别为4.1 c M和0.9 c M。利用科丰1号×南农1138-2的F_2群体,将科丰1号所携带的抗性基因(R~k_(SC13))定位在大豆2号染色体(D1b连锁群)上的Satt558和Sat_254标记之间,遗传距离分别为3.7 c M和16.1 c M。以往发现大豆对SMV不同株系的抗性都分别由1对显性基因控制,本研究在野生大豆中鉴定出隐性抗病基因,并标记定位了该隐性抗病基因,它将为大豆抗病性育种的分子标记辅助选择以及抗性基因的精细定位和克隆奠定基础。  相似文献   

2.
褐色种皮大豆与其黄色种皮衍生亲本的表型及基因型比较   总被引:1,自引:0,他引:1  
大豆种皮色在从野生大豆到栽培大豆的选择过程中逐渐由黑色变成黄色,是重要的形态标记,因此,大豆种皮色相关基因的研究无论是对进化理论研究还是育种实践都具有非常重要的意义。利用褐色种皮J1265-2大豆及其衍生亲本黄色种皮大豆J1265-1为材料,通过SSR引物扩增片段,检验遗传背景的异同,同时对控制种皮的候选基因GmF3’H进行扩增和测序分析。结果表明,褐色种皮和黄色种皮材料不仅用161对SSR分子标记检测没有发现差异,其褐色种皮候选基因GmF3’H的编码区及起始密码子上游1465 bp序列也是一致的。因此,证明褐色种皮J1265-2大豆与其衍生亲本黄色种皮大豆J1265-1为近等基因系,其控制褐色种皮的基因型与已报道的基因型不同。  相似文献   

3.
倒伏性是影响大豆产量的重要因素,发掘与大豆倒伏相关的基因对于培育抗倒伏优良高产大豆品种具有重要意义。目前利用不同群体所构建的遗传图谱已经定位了大量与大豆倒伏性相关的QTLs。本研究在对已报道的QTLs进行物理整合的基础上,选择元分析方法将这些倒伏性相关的QTLs进一步整合,鉴定出位于C2(6号染色体)、F(13号染色体)、L(19号染色体)这3个连锁群上重复次数较多的QTL区间6个。选用基于统计学原理的Overview方法进行优化,获得了这些QTL在各个连锁群上的有效遗传位置,这些QTL的置信区间长度最小可缩至0.2 cM。通过在这些区间内进一步筛选,获得一个稳定性较好的标记Satt277。本研究可为大豆抗倒伏基因发掘及分子标记辅助选择育种提供理论依据。  相似文献   

4.
该研究在收集大豆籽粒镉积累定位信息的基础上,通过参考图谱分子标记比较整合已有的定位信息,进一步在‘中黄24’(籽粒高积累镉)与‘华夏3号’(籽粒低积累镉)衍生的(F6:7)重组自交系群体中,对大豆籽粒镉积累的QTL位点及其分子标记进行验证。结果表明,在不同群体中定位的籽粒镉积累2个主效QTL(Cda1和Cd1)位于第9染色体同一区域;该区段内候选基因GmHMA1的点突变,在籽粒镉积累不同的‘中黄24’和‘华夏3号’之间是一致的;该位点与‘中黄24’和‘华夏3号’各器官的镉浓度并无连锁关系。研究认为,‘中黄24’与‘华夏3号’间籽粒镉积累差异由其它位点控制,需要利用该重组自交系群体进行全基因组定位。  相似文献   

5.
以大豆品种‘合丰25’为母本,半野生大豆‘新民6号’为父本杂交得到的F2-9代122个重组自交系为试验材料,构建了含有124个SSR标记、1个EST标记、3个形态学标记的大豆遗传图谱。此图谱覆盖的基因组长度为2348.3cM.标记间平均距离为18.3cM。每个连锁群长度范围为15.1~195.9cM之间,标记数范围2—10个。本文将控制茸毛色(Pb)基因定位于LG06-C2连锁群上,与Sat_40x2的遗传距离为39.6cM;控制叶耳g(Le)、花色(4W,)基因定位于LG12-F连锁群上,它们之间的遗传距离为9.9cM,与两边的Satt348、Sat_240标记遗传距离分别为13.3cM和10.5cM。  相似文献   

6.
利用营养缺陷诱变对金顶侧耳进行基因连锁分析研究   总被引:2,自引:0,他引:2  
利用金顶侧耳的营养缺陷型菌株配制杂交菌株,通过营养缺陷型标记对其后代进行连锁分析,确定不亲和性因子和营养缺陷标记所在的连锁群及其排列顺序。截止目前的试验数据表明,金顶侧耳至少由6条染色体(连锁群)组成。其中A因子存在的第1连锁群上分布着ade2、pab1、ade5、met2、met7营养缺陷型基因位点;B(Bα、Bβ)因子存在的第2连锁群上分布着cho1、ade1营养缺陷型基因位点;第3连锁群上分布着met9、arg1、his1、ade7、his3、met1营养缺陷型基因位点;第4连锁群分布着nic1、nic2、ade4、pdx2营养缺陷型基因位点;第5连锁群分布着pan1、ino1营养缺陷型基因位点;第6连锁群分布着ile1营养缺陷型基因位点。金顶侧耳与其他担子菌的遗传图谱相同,第1连锁群A因子附近均分布着Ade及Pab营养缺陷型基因位点。  相似文献   

7.
为了对寻常性鱼鳞病的致病基因进行定位, 收集了2个湖南寻常性鱼鳞病家系, 采集外周血, 提取基因组DNA, 采用1号染色体和10号染色体上2个已知寻常性鱼鳞病位点的微卫星标记对这两个家系进行基因分型和连锁分析。结果显示, 寻常性鱼鳞病家系1的致病基因位于D1S498(1q21)附近, 与已知定位区间重叠; 寻常性鱼鳞病家系2的致病基因位点与已知的寻常性鱼鳞病位点不连锁, 可能存在新的致病基因位点。  相似文献   

8.
以黄瓜(Cucumis sativus L.)嫩果皮绿色自交系1613(P1)和嫩果皮白色自交系JD7(P2)为试验材料构建重组自交系(RIL)群体(142个株系),对各株系嫩果皮色进行表型鉴定,利用重测序技术对各自交系进行基因分型,结合表型和基因型数据进行QTL定位研究。结果表明F1黄瓜嫩果皮颜色表现为绿色,并将控制嫩果皮颜色的基因定位到黄瓜第3号染色体上,在3号染色体35511129~39711114区段内定位到成簇分布的3个位点,它们在连锁图谱上的位置分别为1. 01 c M、3. 31 c M和6. 01 c M处,与两翼标记的连锁距离分别为1. 01 c M/0. 09 c M,0. 21 c M/0. 29 c M,0. 11 c M/0. 19 c M。通过生物信息学分析预测出16个候选基因,其中Csa3G904080、Csa3G904100、Csa3G903500和Csa3G902950极有可能是调控黄瓜果实颜色的关键基因。  相似文献   

9.
分枝数是大豆重要的农艺性状之一。对控制大豆分枝数的基因位点进行定位具有重要的理论和应用价值。本研究以寡分枝栽培大豆冀黄13为母本,多分枝地方品种小黑豆为父本配制杂交组合,分别在2012年以F2:3群体为定位群体利用寡分枝单尾法和在2014以F2:4群体为定位群体,利用双尾法选择性基因分型方法对大豆分枝数进行QTL定位研究。研究表明,2012年,在寡分枝单尾群体检测到一个L连锁群上BARC19-1222(71.32 c M)位点与分枝数QTL位点连锁,该位点与已经报道的q Br2和q BN24-1位点较近,可能为同一个位点;2014年,在F2:4分离群体中的双尾群体中共检测到2个与分枝数QTL位点连锁的位点,分别是F连锁群上的BARC13-1845位点和B2连锁群上的BARC14-1214位点。在其附近尚未有分枝数相关QTL位点的报道,这两个位点可能为新位点。本研究将为进一步进行分枝数QTL位点的精细定位和分子标记辅助选择育种奠定基础。  相似文献   

10.
小麦抗穗发芽研究进展   总被引:3,自引:1,他引:2  
穗发芽严重影响小麦品质和产量。种子自身休眠特性、α-淀粉酶活性、α-淀粉酶抑制剂、迟熟α-淀粉酶活性、种皮颜色、颖壳抑制物以及穗部形态等,均是影响小麦穗发芽的重要因素,其中对子粒休眠特性和α-淀粉酶活性的研究较为深入。位于第3染色体组上的R基因、休眠基因以及4AL上的Phs基因均与小麦穗发芽密切相关。已开发出一些与穗发芽抗性相关的分子标记,其中位于第3部分同源群的三重R基因和位于3B染色体的STS标记Vp1B3,以及位于3A染色体的主效QTL位点QPhs.ccsu-3A.1均可直接用于穗发芽抗性的筛选。本文对以上内容进行了详细论述,并就今后如何提高小麦穗发芽抗性进行了讨论。  相似文献   

11.
12.
Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase ( CHS ) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase ( F3'H ) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.  相似文献   

13.
Association of the yellow leaf (y10) mutant to soybean chromosome 3   总被引:1,自引:0,他引:1  
At least 19 single recessive gene yellow leaf mutants and one duplicate recessive gene mutant have been described in soybean. This study was conducted to associate a yellow leaf mutant, y10, with a specific soybean chromosome by using primary trisomics (2n = 41). Seven soybean primary trisomics were hybridized as female parent with genetic stock strain, T161, carrying y10. F(1) disomic and primary trisomic plants were identified cytologically. One disomic (control) and all primary trisomic plants were allowed to self-pollinate and F(2) populations were classified for green versus yellow leaf mutant. The F(2) population of Triplo 3 segregated in a 17:1 ratio, while a disomic (3:1) ratio was observed with Triplo 8-, 17-, 18-, and 20-derived F(2) populations, suggesting that the y10 locus is on chromosome 3. The y10 locus was examined with four simple sequence repeat (SSR) markers (Satt584, Sat_033, Satt387, and Satt022) from molecular linkage group (MLG) N and y10 was found linked with Satt022. Therefore we confirmed the association of MLG N with chromosome 3. The possible association of y10 with Triplo 16 and Triplo 19 are discussed.  相似文献   

14.
Flower color of soybean is primarily controlled by genes W1, W3, W4, Wm, and Wp. In addition, the soybean gene symbol W2, w2 produces purple-blue flower in combination with W1. This study was conducted to determine the genetic control of purple-blue flower of cultivar (cv). Nezumisaya. F(1) plants derived from a cross between Nezumisaya and purple flower cv. Harosoy had purple flowers. Segregation of the F(2) plants fitted a ratio of 3 purple:1 purple-blue. F(3) lines derived from F(2) plants with purple-blue flowers were fixed for purple-blue flowers, whereas those from F(2) plants with purple flowers fitted a ratio of 1 fixed for purple flower:2 segregating for flower color. These results indicated that the flower color of Nezumisaya is controlled by a single gene whose recessive allele is responsible for purple-blue flower. Complementation analysis revealed that flower color of Nezumisaya is controlled by W2. Linkage mapping revealed that W2 is located in molecular linkage group B2. Sap obtained from banner petals of cvs. with purple flower had a pH value of 5.73-5.77, whereas that of cvs. with purple-blue flower had a value of 6.07-6.10. Our results suggested that W2 is responsible for vacuolar acidification of flower petals.  相似文献   

15.
J05 soybean was previously identified to carry 2 independent genes, Rsv1 and Rsv3, for "soybean mosaic virus" (SMV) resistance by inheritance and allelism studies. The objective of this research was to confirm the 2 genes in J05 using molecular markers so that a marker-assisted selection can be implemented. The segregation of F(2) plants from J05 x Essex exhibited a good fit to a 3:1 ratio when inoculated with SMV G1. Three simple sequence repeat (SSR) markers near Rsv1, Satt114, Satt510, and Sat_154, amplified polymorphic DNA fragments between J05 and Essex and were closely linked to the gene on soybean molecular linkage group (MLG) F, thus verifying the presence of Rsv1 in J05 for resistance to SMV G1. The presence of Rsv3 in J05 was confirmed by 2 closely linked SSR markers on MLG B2, Satt726 and Sat_424, in F(2:3) lines that were derived from the SMV G1-susceptible F(2) plants and segregated in a 1:2:1 ratio for reaction to SMV G7. Two closely linked markers for Rsv4, Satt296 and Satt542, segregated independently of SMV resistance, indicating the absence of Rsv4 in J05. These SSR markers for Rsv1 and Rsv3 can serve as a useful molecular tool for selection and pyramiding of genes in J05 for SMV resistance.  相似文献   

16.
Zabala G  Vodkin L 《Genetics》2003,163(1):295-309
Three loci (I, R, and T) control pigmentation of the seed coats in Glycine max and are genetically distinct from those controlling flower color. The T locus also controls color of the trichome hairs. We report the identification and isolation of a flavonoid 3' hydroxylase gene from G. max (GmF3'H) and the linkage of this gene to the T locus. This GmF3'H gene was highly expressed in early stages of seed coat development and was expressed at very low levels or not at all in other tissues. Evidence that the GmF3'H gene is linked to the T locus came from the occurrence of multiple RFLPs in lines with varying alleles of the T locus, as well as in a population of plants segregating at that locus. GmF3'H genomic and cDNA sequence analysis of color mutant lines with varying t alleles revealed a frameshift mutation in one of the alleles. In another line derived from a mutable genetic stock, the abundance of the mRNAs for GmF3'H was dramatically reduced. Isolation of the GmF3'H gene and its identification as the T locus will enable investigation of the pleiotropic effects of the T locus on cell wall integrity and its involvement in the regulation of the multiple branches of the flavonoid pathway in soybean.  相似文献   

17.
花青素代谢途径与植物颜色变异   总被引:2,自引:0,他引:2  
祝志欣  鲁迎青 《植物学报》2016,51(1):107-119
花青素是种子植物呈色的重要色素,由一系列结构基因编码的酶(CHS、CHI、F3H、F3'H、F3'5'H、DFR、ANS和3GT)催化而成,随后经过各种修饰被转运至液泡等部位储存。各类器官中差异表达的MYB、b HLH和WDR三种调控因子通过形成MBW复合体直接正调控以上结构基因的表达。这个过程涉及的基因变异常会导致植物的各种颜色变异。在生活中人们广泛利用这些变异品种,取其丰富色味。造成颜色变异的具体分子机制在很多情况下还不清楚,但日益积累的个例研究为其中的规律性提供了基础数据。该文概述了花青素的合成、转运过程及其转录调控机制,探讨了研究颜色变异品种的常用思路及方法。在总结近年工作的基础上,对生活中常见蔬菜、水果和花卉的颜色变异品种的分子机制进行了综述。  相似文献   

18.
K K Kato  R G Palmer 《Génome》2003,46(1):128-134
We report here the genetic identification of a female partial-sterile mutant derived from soybean mutant L67-3483. L67-3483, which originated from the cultivar Clark after X-ray irradiation, is male and female fertile. All F1 plants in reciprocal pollinations of L67-3483 with 'Clark', 'Minsoy', or 'BSR 101' were female partial sterile. Partial sterility is expressed in the heterozygous condition at a single locus and upon self-pollination this locus exhibits a 1:1 segregation pattern. This locus is located on the terminus of the soybean molecular linkage group D1b+W, between simple sequence repeat (SSR) markers Satt157 and Satt266, and is linked to each by 5.3 and 1.2 cM, respectively. This gene is transmitted through both female and male gametes and there was no segregation distortion of SSR markers linked to this gene. We concluded that this female partial-sterile gene is a new mutation class, and differs from the previously reported mutation classes in soybean, i.e., sporophytic mutation, gametophytic female-specific mutation, and general gametophytic mutation. Restriction of recombination around the mutant gene suggested that this gene is located near or within (a) small inversion(s) or adjacent to (a) chromosomal deletion(s).  相似文献   

19.
The spontaneous fasciation mutation generates novel developmental diversity in cultivated soybean, Glycine max (L.) Merrill. An increased apical dominance in the mutant inhibits axillary buds, causes a branchless phenotype, and restricts reproduction to shoot apices. The fasciation mutation is encoded by a recessive (f) allele at a single locus. The mutation, despite its importance in soybean development, has no locus assignment on previously reported molecular maps of soybean. A population of 70 F(2) progeny was derived from a cross between 'Clark 63' and the fasciation mutant. More than 700 molecular markers (amplified restriction fragment length polymorphisms [AFLPs], random amplified polymorphic DNAs [RAPDs], restriction fragment length polymorphisms [RFLPs], and simple sequence repeats [SSRs]) were used in mapping of the fasciation phenotype. Twenty linkage groups (LGs) corresponding to the public soybean molecular map are represented on the Clark 63 × fasciation mutant molecular map that spans 3050 centimorgans (cM). The f locus was mapped on LG D1b+W and linked with two AFLPs and four SSR markers (Satt005, Satt141, Satt600, and Satt703). No linkage was found between the f locus and several cDNA polymorphic loci between the wild type and the mutant. The known map position of the f locus and demonstration of the mutant phenotype from early postembryonic throughout reproductive stages provide an excellent resource for investigations of molecular mechanisms affecting soybean ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号