首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
秀丽白虾精子发生的研究   总被引:1,自引:0,他引:1  
利用透射电镜观察秀丽白虾的精子发生,并根据染色质及细胞形态的变化将精子发生的全过程划分为五个时期,即精原细胞、初级精母细胞、次级精母细胞、精细胞和精子。在精子发生过程中,细胞器经历了由少到多,到最后解体特化的过程。晚期精细胞中出现单个中心粒,但在成熟精子中消失。棘突由片层复合体衍生物汇集并延伸而成。染色质在精原细胞中为部分异固缩,在精母细胞中高度凝聚为染色体,在精细胞及精子中为均匀非致密态。减数分裂同步率较高。成熟精子中帽状体和棘突构成顶体复合体。  相似文献   

2.
三疣梭子蟹精子的发生及超微结构研究   总被引:28,自引:9,他引:28  
李太武 《动物学报》1995,41(1):41-47
用透射电镜观察三疣梭子蟹的精子发生过程及精子的超微结构。发现精原细胞较大,卵圆形。核大而圆,染色质分散,附着于核膜之内侧。胞质少,内含线粒体和粗面内质网等结构。初级精母细胞比精原细胞略小,卵圆形,核内染色质凝聚成团块,散布于核质中,除线粒体外,胞质中尚含有很多内质网小泡和游离核糖体。次级精母细胞多边形,核卵圆形,染色质致密,线粒体等含量均下降。早期精细胞质中由内质网产生许多颗粒,这些颗粒合并成为大  相似文献   

3.
秀丽白虾精子发生的研究   总被引:3,自引:0,他引:3  
黄海霞  谈奇坤等 《动物学杂志》2001,36(2):2-6,F003,F004
利用透射电镜观察秀丽白虾的精子发生,并根据染色质及细胞形态的变化将精子发生的全过程划分为五个时期,即精原细胞、初级精母细胞、次级精母细胞、精细胞和精子。在精子发生过程中,细胞器经历了由少到多,到最后解体特化的过程。晚期精细胞中出现单个中心粒,但在成熟精子中消失。棘突由片层复合体衍生物汇集并延伸而成。染色质在精原细胞中为部分异固缩,在精母细胞中高度凝聚为染色体,在精细胞及精子中为均匀非致密态。减数分裂同步率较高。成熟精子中帽状体和棘突构成顶体复合体。  相似文献   

4.
通过透射和扫描电镜观察了白肛海地瓜(Acaudina leucoprocta)的精子发生过程及其形态结构,揭示了白肛海地瓜精子发生时期一系列变化,其精子发生分为精原细胞、初级精母细胞、次级精母细胞、精细胞、成熟精子5个时期。精原细胞体积最大。精母细胞染色质开始凝集。精细胞前顶体颗粒形成。白肛海地瓜成熟精子的超微结构为原生型,由头部、中部、尾部组成,头部圆形,最前端为顶体,核染色质凝集成团块状,中部是线粒体和中心粒复合体融合成1个超大结构,尾部长约60μm,尾部鞭毛横切面为典型的"9+2"型结构。  相似文献   

5.
应用光镜和透射电镜技术研究山羊精子发生不同阶段各级生精细胞显微、超微结构及山羊精子分化成熟过程。结果表明:山羊精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精子细胞及变态精子阶段发育成成熟的精子。精原细胞期核呈椭圆形,染色质凝集成团分布于核质中,线粒体开始出现;精母细胞期有高尔基体分布;精子细胞经过核质浓缩、线粒体迁移等过程发育成成熟精子,成熟的山羊精子头部细长,核质高度浓缩,中段膨大,线粒体丰富。线粒体、中心粒对精子变态发生起重要作用,同时观察到头部与中段脱落的畸形精子。  相似文献   

6.
应用透射电镜(TEM)技术研究了日本沼虾精子发生过程中细胞核的形态变异。生精细胞的核经历了由圆形或椭圆形变为浅碟状的一系列变化过程;其核膜由原来的完整变为不完整,成熟精子仅在精子尾部具有核膜;核内染色质由松散逐渐聚合分化,在成熟精子核内形成了泡状和丝状两种形态的核物质。精子具备泡状和丝状两种核物质是日本沼虾的重要特征之一。精核的形态可以作为十足类甲壳动物的重要分类依据;研究精子发生过程中细胞核的形  相似文献   

7.
半滑舌鳎精子发生和精子形成的超微结构   总被引:2,自引:0,他引:2  
用电子显微镜对半滑舌鳎(Cynoglossus semilaevis)精子发生的过程及精子的超微结构进行了观察。半滑舌鳎精巢属于小叶型,精小叶由各期生精细胞和支持细胞构成。半滑舌鳎的精子发生经历了初级精原细胞、次级精原细胞、初级精母细胞、次级精母细胞和精子细胞,再经过精子形成过程发育成为精子。初级精母细胞成熟分裂的前期Ⅰ,同源染色体经历了联会复合体形成和解聚的变化。在精子形成的过程中,精细胞大致经历了核质浓缩、线粒体迁移及鞭毛的发生等过程。核质浓缩时,精细胞核内位于植入窝周围的染色质首先由细颗粒状浓缩成粗大颗粒状,然后细胞核其他部位的染色质也逐渐浓缩成粗大颗粒状。这些已浓缩成粗大颗粒状的染色质再进一步浓缩为电子密度高的均匀状物质。随着核质的浓缩,核外膜与核内膜之间的间隙增大形成核膜间隙,核内一些没有参与染色质浓缩的物质通过出芽形成囊泡,先排入核膜间隙,然后再外排到细胞质中。核浓缩过程中细胞核的体积和表面积都大大缩小;鞭毛的形成与细胞核的浓缩是同步进行的,当一对中心粒移近细胞核时,核膜凹陷形成植入窝,其周围染色质浓缩的同时,远端中心粒(基体)逐渐向后产生轴丝。成熟精子无顶体,头细长,主要为核占据,核凹窝发达,线粒体4-5个环绕在鞭毛基部形成袖套,尾细长,具侧鳍,尾部轴丝为"9 2"结构。  相似文献   

8.
苏晓红  刘晓  吴佳  魏艳红  王云霞  邢连喜 《昆虫学报》2011,54(10):1104-1110
为探讨凋亡调节因子Bcl-2和Bax蛋白对白蚁生殖蚁和工蚁性腺发育的影响, 揭示白蚁生殖品级与非生殖品级性腺发育的调节机理, 以尖唇散白蚁Reticulitermes aculabialis为研究对象, 运用免疫细胞化学定位方法对生殖蚁和工蚁精子发生过程中的Bcl-2和Bax蛋白表达进行了研究。结果显示: 生殖蚁和工蚁精子发生过程中从精原细胞至精子时期均有Bcl-2-like和Bax-like的阳性表达。生殖蚁的次级精母细胞、 精子细胞和精子中Bcl-2-like阳性表达率较高, 而在精原细胞和初级精母细胞中阳性率较低; 工蚁在次级精母细胞中最高, 在精原细胞和初级精母细胞中较低。除初级精母细胞期外, 工蚁生殖细胞其他发育阶段Bax-like阳性表达率均显著高于生殖蚁同一阶段生殖细胞。生殖蚁的生殖细胞在精原细胞、 初级精母细胞和次级精母细胞时期Bax-like阳性表达率较高, 发育至精子时期阳性率最低; 工蚁在次级精母细胞、 精子细胞和精子时期Bax-like表达率较高, 在初级精母细胞中表达率最低。在精子发生过程中, 生殖蚁生殖细胞Bax/Bcl表达量比值逐步下降; 而工蚁生殖细胞发育过程中Bax/Bcl表达量比值仅在次级精母细胞期下降, 其他发育时期均升高; 根据Bax/Bcl判断, 精原细胞和初级精母细胞是生殖蚁精子发生过程中主要的凋亡点, 而工蚁除了精原细胞和初级精母细胞外, 精子细胞和精子也是主要的凋亡目标。研究结果表明, 白蚁生殖细胞凋亡与其他动物一样受Bcl-2家族的调节, 在精子发生过程中Bcl-2-like和Bax-like表达具有动态变化规律, 正是这种变化调控生殖细胞在不同发育阶段的生或死; Bcl-2-like和Bax-like对生殖细胞凋亡调节不仅在精子发生中有非常重要的作用, 而且可能与工蚁品级的形成有关。  相似文献   

9.
锯缘青蟹精子发生的超微结构   总被引:13,自引:0,他引:13  
王艺磊  张子平 《动物学报》1997,43(3):249-254
采用透射电镜观察锯缘青蟹精子发生过程中超微结构的变化,结果表明:精原细胞椭圆形,染色质分布于核膜周围,胞质中具嵴少的线粒体,内质网小泡等。初级精母细胞染色质呈非浓缩状,胞质中具众 内质网小泡,特殊的膜系及晶格状结构。次级精母细胞核质间出现由内质小泡聚集成的腔。  相似文献   

10.
用透射电镜和扫描电镜观察隆线精子的发生过程及成熟精子的超微结构。隆线精子发生经历精原细胞、精母细胞、精子细胞和成熟精子四个时期。精原细胞核染色质凝集成团,细胞质内有线粒体、粗面内质网分布。精母细胞核染色质分散,不均匀地分布于核中,细胞质内粗面内质网聚集。在精子细胞分化形成精子的早期,细胞纵向拉伸,核物质开始浓缩;中期精子细胞呈明显的长条形,精子细胞逐渐移入精巢管腔中央,外围包裹一厚层精子鞘;后期精子细胞已进入管腔中,核物质呈高度浓缩状,细胞质层较少,精子细胞间通过外围精子鞘相互粘连成片。成熟精子分散在精巢管腔中央,外形呈棒状,一端稍钝,一端稍尖,无鞭毛、棘突等附属物;核内染色质解聚,均匀分布在核中,具双层核膜,细胞质层很少,精子鞘为单层,无法确认顶体端。隆线雄性生殖细胞的结构及其发生过程均较高等甲壳动物简单和原始,但在功能上表现出相对的适应性,使以隆线为代表的枝角类能适应复杂多变的生活环境  相似文献   

11.
《Journal of morphology》2017,278(8):1149-1159
Calcium plays a variety of vital regulatory functions in many physiological and biochemical events in the cell. The aim of this study was to describe the ultrastructural distribution of calcium during different developmental stages of spermatogenesis in a model organism, the zebrafish (Danio rerio ), using a combined oxalate–pyroantimonate technique. Samples were treated by potassium oxalate and potassium pyroantimonate during two fixation stages and examined using transmission electron microscopy to detect electron dense intracellular calcium. The subcellular distribution of intracellular calcium was characterized in spermatogonium, spermatocyte, spermatid, and spermatozoon stages. The area which is covered by intracellular calcium in different stages was quantified and compared using software. Isolated calcium deposits were mainly detectable in the cytoplasm and the nucleus of the spermatogonium and spermatocyte. In the spermatid, calcium was partially localized in the cytoplasm as isolated deposits. However, most calcium was transformed from isolated deposits into an unbound pool (free calcium) within the nucleus of the spermatid and the spermatozoon. Interestingly, in the spermatozoon, calcium was mainly localized in a form of an unbound pool which was detectable as an electron‐dense mass within the nucleus. Also, sporadic calcium deposits were scattered in the midpiece and flagellum. The proportional area which was covered by intracellular calcium increased significantly from early to late stages of spermatogenesis. The extent of the area which was covered by intracellular calcium in the spermatozoon was the highest compared to earlier stages. Calcium deposits were also observed in the somatic cells (Sertoli, myoid, Leydig) of zebrafish testis. The notable changes in the distribution of intracellular calcium of germ cells during different developmental stages of zebrafish spermatogenesis suggest its different homeostasis and physiological functions during the process of male gamete development.  相似文献   

12.
Ge S  Wang S  Kang X  Duan F  Wang Y  Li W  Guo M  Mu S  Zhang Y 《Cytotechnology》2011,63(6):581-598
According to the ultrastructural characteristic observation of the developing male germ cells, spermatogenesis of the crustacean shrimp, Fenneropenaeus chinensis, is classified into spermatogonia, primary spermatocytes, secondary spermatocyte, four stages of spermatids, and mature sperm. The basic protein transition during its spermatogenesis is studied by transmission electron microscopy of ammoniacal silver reaction and immunoelectron microscopical distribution of acetylated histone H4. The results show that basic protein synthesized in cytoplasm of spermatogonia is transferred into the nucleus with deposition on new duplicated DNA. In the spermatocyte stage, some nuclear basic protein combined with RNP is transferred into the cytoplasm and is involved in forming the cytoplasmic vesicle clumps. In the early spermatid, most of the basic protein synthesized in the new spermatid cytoplasm is transferred into the nucleus, and the chromatin condensed gradually, and the rest is shifted into the pre-acrosomal vacuole. In the middle spermatid, the nuclear basic protein linked with DNA is acetylated and transferred into the proacrosomal vacuole and assembled into the acrosomal blastema. At the late spermatid, almost all of the basic protein in the nucleus has been removed into the acrosome. During the stage from late spermatid to mature sperm, some de novo basic proteins synthesized in the cytoplasm belt transfer into the nucleus without a membrane and almost all deposit in the periphery to form a supercoating. The remnant histone H4 accompanied by chromatin fibers is acetylated in the center of the nucleus, leading to relaxed DNA and activated genes making the nucleus non-condensed.  相似文献   

13.
The function of the gene gilgamesh (89B9-12) encoding a casein kinase in Drosophila spermatogenesis was studied. The chimeric Gilgamesh-GFP protein in spermatocytes is cortically located. In the polar and apolar spermatocytes, it concentrates at the terminal ends of the fusome, the organelle that passes through the system of ring canals of the spermatocyte cyst. At the stage of spermatid elongation, the protein associates with the nucleus. A spot of the highest Gilgamesh-GFP concentration in the nucleus co-localizes with γ-tubulin in the basal body. At later stages, Gilgamesh is localized to the individualization complex (IC), leaving the nuclei somewhat before the IC investment cones, as detected by actin binding. The sterile mutation due to the gilgamesh gene leads to the phenotype of scattered nuclei and altered structure of actin cones in the individualizing spermatid cyst. Ultrastructural evidence confirmed defective spermatid individualization due to the mutation. The phylogenetic origin of the protein, and the connection between vesicular trafficking and spermatid individualization, are discussed.  相似文献   

14.
粗糙沼虾精巢发育的组织学   总被引:1,自引:1,他引:0  
利用光镜技术,对粗糙沼虾精巢发育进行了研究,根据精子发生过程中每种生殖细胞所占的比例和发生的次序,并结合精巢的形态特征,把精巢发育过程分为五个时期,即精原细胞期,精母细胞期,精细胞期,成熟精子期及退化期,精原细胞期,精巢小,透明乳白色,生精小管内的生殖细胞以精原细胞为主;精母细胞期;精巢体积增大,半透明乳白色,主要由处于初级精母细胞的次级精母细胞阶段的生殖细胞组成;精细胞期,精巢体积继续增大,颜色加深,生精小管内的生殖细胞以精细胞为主;成熟精子期,精巢体积可达最大,紫红色,生精小管内充满着成熟的精子,退化期;精巢体积减小,半透明乳白色,生精小管内的成熟精子几乎排空。  相似文献   

15.
Spermatogenesis in the dab is described in five easily identifiable stages: spermatogonium (Stage I), primary spermatocyte (II), secondary spermatocyte (III), spermatid (IV), and spermatozoon (V). The annual reproductive cycle in male dab may be divided into four morphologically and histologically distinct periods: prespawning (September-November), spawning (December-March), postspawning (April-May) and resting (June-August) period.  相似文献   

16.
The structures of differentiating male germ cells in the testis of the giant freshwater prawn, Macrobrachium rosenbergii, were studied by light and electron microscopy. Based on ultrastructural characteristics, the developing male germ cells are classified into 12 stages, including spermatogonia, six phases of primary spermatocytes (leptotene, zygotene, pachytene, diplotene, diakinesis and metaphase), secondary spermatocyte, three stages of spermatids and mature sperm. During spermatogenesis, the differentiating germ cells have characteristics similar to those of other invertebrates, but they exhibit some unique characteristics during spermiogenesis. In particular, an early spermatid has a round nucleus with highly condensed heterochromatin, appearing as thick interconnecting cords throughout the nucleus. In contrast to most invertebrates and vertebrates, the chromatin begins to decondense in one-half of the nucleus at the mid spermatid stage. In the late spermatid, the chromatin becomes almost entirely decondensed with only a small crescent-shaped heterochromatin patch remaining at the anterior pole of the nucleus. Mature sperm possess an everted umbrella-shaped plate with a spike covering the anterior pole of the nucleus, whose chromatin is totally decondensed as only small traces of histones H3 and H2B remain. The acrosome appears at the ruffled border of the spike plate as small sac-like structures. Few mitochondria remain in the cytoplasm at the posterior pole.  相似文献   

17.
日本沼虾精子发生的研究   总被引:21,自引:3,他引:18  
赵云龙  堵南山 《动物学报》1997,43(3):243-248
对日本沼虾精子发生全过程的电镜观察表明:精原细胞核染色质分散,胞质内有线粒休、内质网的分布。初级精母细胞核染色质块状,不均匀地分布于核中,内质同多小泡多。次级精母细胞核染色质大多分布于核膜内侧,内质网聚集成团,精细胞分化形成精子的早期,胞核增大,核侧形成内质同多小泡的聚合体;中期的核内染色质浓缩,同时形成空囊状结构,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号