首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na(+)-dependent excitatory amino acid transporters (EAATs) normally function to remove extracellular glutamate from brain extracellular space, but EAATs can also increase extracellular glutamate by reversal of uptake. Effects of inhibitors on EAATs can be complex, depending on cell type, whether conditions favor glutamate uptake or uptake reversal and whether the inhibitor itself is a substrate for the transporters. The present study assessed EAAT inhibitors for their ability to inhibit glutamate uptake, act as transporter substrates and block uptake reversal in astrocyte and neuron cultures. L-threo-beta-hydroxyaspartate (L-TBHA), DL-threo-beta-benzyloxyaspartate (DL-TBOA), L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-2,4-PDC) (+/-)-cis-4-methy-trans-pyrrolidine-2,4-dicarboxylic acid (cis-4-methy-trans-2,4-PDC) and L-antiendo-3,4-methanopyrrolidine-2,4-dicarboxylic acid (L-antiendo-3,4-MPDC) inhibited L-[14C]glutamate uptake in astrocytes with equilibrium binding constants ranging from 17 microM (DL-TBOA and L-TBHA) - 43 microM (cis-4-methy-trans-2,4-PDC). Transportability of inhibitors was assessed in astrocytes and neurons. While L-TBHA, L-trans-2,4-PDC, cis-4-methy-trans-2,4-PDC and L-antiendo-3,4-MPDC displayed significant transporter substrate activities in neurons and astrocytes, DL-TBOA was a substrate only in astrocytes. This effect of DL-TBOA was concentration-dependent, leading to complex effects on glutamate uptake reversal. At concentrations low enough to produce minimal DL-TBOA uptake velocity (< or = 10 microM), DL-TBOA blocked uptake reversal in ATP-depleted astrocytes; this blockade was negated at concentrations that drove substantial DL-TBOA uptake (> 10 microM). These findings indicate that the net effects of EAAT inhibitors can vary with cell type and exposure conditions.  相似文献   

2.
In the post-antibiotics era, prebiotics are proposed as alternatives to antibiotic growth promoters in poultry production. The goal of this study was to compare in ovo method of prebiotic delivery with in-water supplementation and with both methods combined (in ovo+in-water) in broiler chickens. Two trials were conducted. Trial 1 was carried out to optimize the doses of two prebiotics, DN (DiNovo®, extract of beta-glucans) and BI (Bi2tos, trans-galactooligosaccharides), for in ovo delivery. The estimated parameters were hatchability and bacteriological status of the newly hatched chicks. Prebiotics were dissolved in 0.2 ml of physiological saline, at the doses: 0.18, 0.88, 3.5 and 7.0 mg/embryo; control group (C) was injected in ovo with 0.2 ml of physiological saline. Trial 2 was conducted to evaluate effects of different prebiotics (DN, BI and raffinose family oligosaccharides (RFO)) delivered in ovo, in-water and in a combined way (in ovo+in-water) on broiler chickens performance. The results of the Trial 1 indicated that the optimal dose of DN and BI prebiotics delivered in ovo, that did not reduce chicks’ hatchability, was 0.88 mg/embryo (DN) and 3.5 mg/embryo (BI). Both prebiotics numerically increased number of lactobacilli and bifidobacteria in chicken feces (P>0.05). In Trial 2, all prebiotics (DN, BI and RFO) significantly increased BW gain compared with the C group (P<0.05), especially during the first 21 days of life. However, feed intake and feed conversion ratio were increased upon prebiotics delivery irrespective of method used. Injection of prebiotics in ovo combined with in-water supplementation did not express synergistic effects on broilers performance compared with in ovo injection only. Taken together, those results confirm that single in ovo prebiotics injection into the chicken embryo can successfully replace prolonged in-water supplementation post hatching.  相似文献   

3.
In ovo feeding (IOF) of l-arginine (Arg) can affect growth performance of broilers, but the response of IOF of Arg on breast muscle growth is unclear, and the mechanism involved in protein deposition remains unknown. Hense, this experiment was conducted to evaluate the effects of IOF of Arg on breast muscle growth and protein-deposited signalling in post-hatch broilers. A total of 720 fertile eggs were collected from 34-week-old Arbor Acres breeder hens and distributed to three treatments: (1) non-injected control group; (2) 7.5 g/l (w/v) NaCl diluent-injected control group; (3) 0.6 mg Arg/egg solution-injected group. At 17.5 days of incubation, fertile eggs were injected 0.6 ml solutions into the amnion of the injected groups. Upon hatching, 80 male chicks were randomly assigned to eight replicates of 10 birds each and fed ad libitum for 21 days. The results indicated that IOF of Arg increased relative breast muscle weight compared with those of control groups at hatch, 3-, 7- and 21-day post-hatch (P<0.05). In the Arg-injected group, the plasma total protein and albumen concentrations were higher at 7- and 21-day post-hatch than those of control groups (P<0.05). The alanine aminotransferase activity in Arg group was higher at hatch than that of control groups (P<0.05). The levels of triiodothyronine at four time points and thyroxine hormones at hatch, 7- and 21-day post-hatch in Arg group were higher than those of control groups (P<0.05). In addition, IOF of Arg increased the amino acid concentrations of breast muscle at hatch, 7- and 21-day post-hatch (P<0.05). In ovo feeding of Arg also enhanced mammalian target of rapamycin, ribosomal protein S6 kinase-1 and eIF4E-bindingprotein-1 messenger RNA expression levels at hatch compared with those of control groups (P<0.05). It was concluded that IOF of Arg treatment improved breast muscle growth, which might be associated with the enhancement of protein deposition.  相似文献   

4.
Hypoimmunity and numerous stresses are two major challenges in broiler industry. Nutrient intervention at the specific time of embryonic stage is a feasible way to improve animal performance. This study was conducted to investigate the possible effects of in ovo feeding (IOF) of vitamin C at embryonic age 15th day (E15) on growth performance, antioxidation and immune function of broilers. A total of 240 broiler fertile eggs were randomly divided into two groups (0 and 3 mg injected dose of vitamin C at E15), and new-hatched chicks from each treatment were randomly allocated into six replicates with 10 chicks per replicate after incubation. The results indicated that in ovo vitamin C injection improved the hatchability (P < 0.05) and increased immunoglobulin M (IgM) (at the broiler’s age 1st day, D1), IgG and IgM concentrations (D21), as well as lysozyme activity (D21, P < 0.05) and total antioxidant capacity (D42, P < 0.01) in plasma of broilers. On D21, the splenic expression level of DNA methyltransferase 1 (DNMT1) was up-regulated in vitamin C (VC) group, whereas interleukin (IL)-6, interferon-γ, ten-eleven translocation protein 1 and thymine-DNA glycosylase were down-regulated (P < 0.05). On D42, in ovo vitamin C injection up-regulated splenic expression levels of DNMT1, DNA methyltransferase 3B (DNMT3B) and growth arrest and DNA-damage-inducible protein beta (P < 0.05), whereas down-regulated splenic expression levels of IL-6, tumour necrosis factor-α and methyl-CpG-binding domain protein 4 (P < 0.05). Our findings suggested that IOF of 3 mg vitamin C at E15 could improve, to some extent, the antioxidant activity and immune function in plasma, corresponding with the lower expression of pro-inflammatory cytokines in spleen. However, IOF of vitamin C leading to the changes in the expression of DNA methyltransferases and demethylases may suggest an increased trend of DNA methylation level in spleen and whether DNA methylation variation is associated with the lower expression of pro-inflammatory cytokines in spleen warrants future study.  相似文献   

5.
Glutamate receptors and transporters, including T1R1 and T1R3 (taste receptor 1, subtypes 1 and 3), mGluRs (metabotropic glutamate receptors), EAAC-1 (excitatory amino acid carrier-1), GLAST-1 (glutamate-aspartate transporter-1), and GLT-1 (glutamate transporter-1), are expressed in the gastrointestinal tract. This study determined effects of oral administration of monosodium glutamate [MSG; 0, 0.06, 0.5, or 1 g/kg body weight (BW)/day] for 21 days on expression of glutamate receptors and transporters in the stomach and jejunum of sow-reared piglets. Both mRNA and protein levels for gastric T1R1, T1R3, mGluR1, mGluR4, EAAT1, EAAT2, EAAT3, and EAAT4 and mRNA levels for jejunal T1R1, T1R3, EAAT1, EAAT2, EAAT3 and EAAT4 were increased (P < 0.05) by MSG supplementation. Among all groups, mRNA levels for gastric EAAT1, EAAT2, EAAT3, and EAAT4 were highest (P < 0.05) in piglets receiving 1 g MSG/kg BW/day. EAAT1 and EAAT2 mRNA levels in the stomach and jejunum of piglets receiving 0.5 g MSG/kg BW/day, as well as jejunal EAAT3 and EAAT4 mRNA levels in piglets receiving 1 g MSG/kg BW/day, were higher (P < 0.05) than those in the control and in piglets receiving 0.06 g MSG/kg BW/day. Furthermore, protein levels for jejunal T1R1 and EAAT3 were higher (P < 0.05) in piglets receiving 1 g MSG/kg BW/day than those in the control and in piglets receiving 0.06 g MSG/kg BW/day. Collectively, these findings indicate that dietary MSG may beneficially stimulate glutamate signaling and sensing in the stomach and jejunum of young pigs, as well as their gastrointestinal function.  相似文献   

6.
The concentration of glutamate within the glutamatergic synapse is tightly regulated by the excitatory amino-acid transporters (EAATs). In addition to their primary role of clearing extracellular glutamate, the EAATs also possess a thermodynamically uncoupled Cl conductance. Several crystal structures of an archaeal EAAT homolog, GltPh, at different stages of the transport cycle have been solved. In a recent structure, an aqueous cavity located at the interface of the transport and trimerization domains has been identified. This cavity is lined by polar residues, several of which have been implicated in Cl permeation. We hypothesize that this cavity opens during the transport cycle to form the Cl channel. Residues lining this cavity in EAAT1, including Ser-366, Leu-369, Phe-373, Arg-388, Pro-392, and Thr-396, were mutated to small hydrophobic residues. Wild-type and mutant transporters were expressed in Xenopus laevis oocytes and two-electrode voltage-clamp electrophysiology, and radiolabeled substrate uptake was used to investigate function. Significant alterations in substrate-activated Cl conductance were observed for several mutant transporters. These alterations support the hypothesis that this aqueous cavity at the interface of the transport and trimerization domains is a partially formed Cl channel, which opens to form a pore through which Cl ions pass. This study enhances our understanding as to how glutamate transporters function as both amino-acid transporters and Cl channels.  相似文献   

7.
8.
真核生物高亲和力谷氨酸转运体(excitatory amino acid transporters,EAATs)分为GLAST(EAAT1)、GLT-1(EAAT2)、EAAC1(EAAT3)、EAAT4和EAAT5等5个亚型.高亲和力谷氨酸转运体结构学的研究,揭示了谷氨酸转运体的跨膜拓扑结构、真核和原核生物EAATs结构的差异,以及在底物转运过程中的一些底物和协同转运离子的结合位点.其功能学的研究发现,EAATs在参与突触的传递,避免兴奋性氨基酸的毒性效应中发挥重要作用,同时也参与了对学习、记忆以及运动行为的调控.结合我们既往的工作,就近几年EAATs的结构和功能研究做一综述.  相似文献   

9.
Recently, we found that in ovo feeding of l-leucine (l-Leu) afforded thermotolerance, stimulated lipid metabolism and modified amino acid metabolism in male broiler chicks. However, the effects of in ovo feeding of l-Leu on thermoregulation and growth performance until marketing age of broilers are still unknown. In this study, we investigated the effects of in ovo feeding of l-Leu on body weight (BW) gain under control thermoneutral temperature or chronic heat stress. We measured changes of body temperature and food intake, organ weight, as well as amino acid metabolism and plasma metabolites under acute and chronic heat stress in broilers. A total of 168 fertilized Chunky broiler eggs were randomly divided into 2 treatment groups in experiments. The eggs were in ovo fed with l-Leu (34.5 µmol/500 µl per egg) or sterile water (500 µl/egg) during incubation. After hatching, male broilers were selected and assigned seven to nine replicates (one bird/replicate) in each group for heat challenge experiments. Broilers (29- or 30-day-old) were exposed to acute heat stress (30 ± 1°C) for 120 min or a chronic heat cyclic and continued heat stress (over 30 ± 1°C; ages, 15 to 44 days). In ovo feeding of l-Leu caused a significant suppression of enhanced body temperature without affecting food intake, plasma triacylglycerol, non-esterified fatty acids, ketone bodies, glucose, lactic acid or thyroid hormones under acute heat stress. Daily body temperature was significantly increased by l-Leu in ovo feeding under chronic heat stress. Interestingly, in ovo feeding of l-Leu caused a significantly higher daily BW gain compared with that of the control group under chronic heat stress. Moreover, some essential amino acids, including Leu and isoleucine, were significantly increased in the liver and decreased in the plasma by l-Leu in ovo feeding under acute heat stress. These results suggested that l-Leu in ovo feeding afforded thermotolerance to broilers under acute heat stress mainly through changing amino acid metabolism until marketing age.  相似文献   

10.
Excitatory amino acid transporters (EAATs) limit glutamatergic signaling and maintain extracellular glutamate concentrations below neurotoxic levels. Of the five known EAAT isoforms (EAATs 1–5), only the neuronal isoform, EAAT3 (EAAC1), can efficiently transport the uncharged amino acid L-cysteine. EAAT3-mediated cysteine transport has been proposed to be a primary mechanism used by neurons to obtain cysteine for the synthesis of glutathione, a key molecule in preventing oxidative stress and neuronal toxicity. The molecular mechanisms underlying the selective transport of cysteine by EAAT3 have not been elucidated. Here we propose that the transport of cysteine through EAAT3 requires formation of the thiolate form of cysteine in the binding site. Using Xenopus oocytes and HEK293 cells expressing EAAT2 and EAAT3, we assessed the transport kinetics of different substrates and measured transporter-associated currents electrophysiologically. Our results show that L-selenocysteine, a cysteine analog that forms a negatively-charged selenolate ion at physiological pH, is efficiently transported by EAATs 1–3 and has a much higher apparent affinity for transport when compared to cysteine. Using a membrane tethered GFP variant to monitor intracellular pH changes associated with transport activity, we observed that transport of either L-glutamate or L-selenocysteine by EAAT3 decreased intracellular pH, whereas transport of cysteine resulted in cytoplasmic alkalinization. No change in pH was observed when cysteine was applied to cells expressing EAAT2, which displays negligible transport of cysteine. Under conditions that favor release of intracellular substrates through EAAT3 we observed release of labeled intracellular glutamate but did not detect cysteine release. Our results support a model whereby cysteine transport through EAAT3 is facilitated through cysteine de-protonation and that once inside, the thiolate is rapidly re-protonated. Moreover, these findings suggest that cysteine transport is predominantly unidirectional and that reverse transport does not contribute to depletion of intracellular cysteine pools.  相似文献   

11.
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are relevant to fetal and infant growth and development. Objective: to assess whether long-term exposure to dietary ω-3 PUFA imbalance alters pre- and/or postnatal pups' development and reproductive function later in life. Mice dams were fed with ω-3 PUFA Control (soybean oil, 7%), Deficient (sunflower oil, 7%) or Excess (blend oil; 4.2% cod-liver+2.8% soybean) diet before conception and throughout gestation-lactation and later on, their pups received the same diet from weaning to adulthood. Offspring somatic, neurobiological and reproductive parameters were evaluated. Excess pups were lighter during the preweaning period and shorter in length from postnatal day (PND) 7 to 49, compared to Control pups (P<.05). On PND14, the percentage of pups with eye opening in Excess group was lower than those from Control and Deficient groups (P<.05). In Excess female offspring, puberty onset (vaginal opening and first estrus) occurred significantly later and the percentage of parthenogenetic oocytes on PND63 was higher than Control and Deficient ones (P<.05). Deficient pups were shorter in length (males: on PND14, 21, 35 and 49; females: on PND14, 21 and 42) compared with Control pups (P<.05). Deficient offspring exhibited higher percentage of bending spermatozoa compared to Control and Excess offspring (P<.05). These results show that either an excessively high or insufficient ω-3 PUFA consumption prior to conception until adulthood seems inadvisable because of the potential risks of short-term adverse effects on growth and development of the progeny or long-lasting effects on their reproductive maturation and function.  相似文献   

12.
Astrocytic excitatory amino acid transporters (EAATs) regulate excitatory transmission and limit excitotoxicity. Evidence for a functional interface between EAATs and glial fibrillary acidic protein (GFAP) relevant to astrocytic morphology led to investigations of actions of transportable (d-Aspartate (d-Asp) and (2S,3S,4R)-2-(carboxycyclopropyl)glycine (l-CCG-III)) and non-transportable (dl-threo-β-benzyloxyaspartate (dl-TBOA)) inhibitors of Glu uptake in murine astrocytes. d-Asp (1 mM), l-CCG-III (0.5 mM) and dl-TBOA (0.5 mM) produced time-dependent (24–72 h) reductions in 3[H]d-Asp uptake (approximately 30–70%) with little or no gliotoxicity. All drugs induced a profound change in phenotype from cobblestone to stellate morphology and image analysis revealed increases in the intensity of GFAP immunolabelling for l-CCG-III and dl-TBOA. Cytochemistry indicated localized changes in F-actin distribution. Cell surface expression of EAAT2, but not EAAT1, was elevated at 72 h. Blockade of Glu uptake by both types of EAAT inhibitor exerts longer-term effects on astrocytic morphology and a compensatory homeostatic rise in EAAT2 abundance.  相似文献   

13.
In the mammalian retina, glutamate uptake is mediated by members of a family of glutamate transporters known as “excitatory amino acid transporters (EAATs).” Here we cloned and functionally characterized two retinal EAATs from mouse, the GLT-1/EAAT2 splice variant GLT-1c, and EAAT5. EAATs are glutamate transporters and anion-selective ion channels, and we used heterologous expression in mammalian cells, patch-clamp recordings and noise analysis to study and compare glutamate transport and anion channel properties of both EAAT isoforms. We found GLT-1c to be an effective glutamate transporter with high affinity for Na+ and glutamate that resembles original GLT-1/EAAT2 in all tested functional aspects. EAAT5 exhibits glutamate transport rates too low to be accurately measured in our experimental system, with significantly lower affinities for Na+ and glutamate than GLT-1c. Non-stationary noise analysis demonstrated that GLT-1c and EAAT5 also differ in single-channel current amplitudes of associated anion channels. Unitary current amplitudes of EAAT5 anion channels turned out to be approximately twice as high as single-channel amplitudes of GLT-1c. Moreover, at negative potentials open probabilities of EAAT5 anion channels were much larger than for GLT-1c. Our data illustrate unique functional properties of EAAT5, being a low-affinity and low-capacity glutamate transport system, with an anion channel optimized for anion conduction in the negative voltage range.  相似文献   

14.
Background aimsWe tested the hypothesis that sitagliptin is capable of increasing blood flow in the rat critical limb ischemia (CLI) model by enhancement of angiogenesis.MethodsAdipose tissue from adult-male Fischer 344 rats (n = 6) were cultured in endothelial progenitor cell culture medium for 14 d with (25 μmol/L) or without sitagliptin. CLI was induced by ligation of the left femoral artery. Rats (n = 32) were equally separated into four groups: untreated controls (group 1), sitagliptin (4 mg/kg per day; group 2), CLI (group 3) and CLI with sitagliptin (group 4).ResultsIn vitro, 7 and 14 d after cell culture, endothelial progenitor cell biomarkers assessed by flow cytometry (Sca-1/CD31+, CXCR4+, c-kit+ and CD34+ cells) and Western blot (vascular endothelial growth factor, CXCR4 and stromal-derived factor [SDF]-1α) were remarkably higher in group 4 than in the other groups (all P < 0.01). In vivo, 2 and 14 d after the CLI procedure, circulating angiogenic cell (Sca-1/CD31+, Sca-1+ and CD31+) numbers were significantly higher in group 4 than in the other groups (all P < 0.001). Additionally, the messenger RNA and protein expression of angiogenic biomarkers (CXCR4, SDF-1α and vascular endothelial growth factor), immunofluorescent staining of angiogenic cells (CXCR4+, SDF-1α+, CD31+, von Willebrand factor + cells) and immunohistochemical staining of small vessel numbers in the ischemic area were significantly higher in group 4 than in the other groups (all P < 0.01). Furthermore, laser Doppler showed that the ratio of ischemic/normal blood flow was remarkably higher group 4 than in group 3 by days 14 and 28 after the CLI procedure (all P < 0.01).ConclusionsSitagliptin therapy enhances circulating angiogenic cell numbers, angiogenesis and blood flow in the CLI area.  相似文献   

15.
The use of tail chalk and estrus/heat expression scores (HEATSC) evaluation is instrumental in identifying cows with greater estrus expression and greater artificial insemination pregnancy rates (P/AI) in cows submitted to timed artificial insemination (TAI), and cows with low or no estrus expression present lower P/AI. It was intended in this study to improve the pregnancy rates in TAI for Bos indicus beef cows, and gonadotrophin-releasing hormone (GnRH) injection was hypothesized to increase pregnancy rates in a TAI program for cows submitted to progesterone–estradiol-based protocols with low or no estrus expression, evaluated by HEATSC. Cows (n= 2284) received a progesterone device and 2 mg estradiol benzoate, after 8 days the device was removed and 1 mg estradiol cypionate, 150 μg of d-cloprostenol and 300 IU equine chorionic gonadotropin was administered. All cows were marked with chalk and HEATSC evaluated (scales 1 to 3) at TAI performed on day 10. Animals with HEATSC1 and HEATSC2 (n= 937) received 100 μg de gonadorelin (GNRH group; n= 470), or 1 ml saline (Control group; n= 467), and cows with HEATSC3 (named HEAT group; n= 1347) received no additional treatment. The larger dominant follicle, evaluated on day 8and at TAI (day 10), was greater in HEAT group (P= 0.0145 and P <0.001, respectively). Corpus luteum (CL) area and progesterone concentration was evaluated on day 17, and CL area was larger in HEAT group, intermediary in Control and lower in GnRH group (Control= 2.68 cm2, GnRH= 2.37 cm2, HEAT group= 3.07 cm2, P <0.001). Greater progesterone concentrations were found in HEAT group than in Control and GnRH groups (Control= 4.74 ng/ml, GnRH= 4.29 ng/ml, HEAT group= 6.08 ng/ml, P<0.001). There was a difference in ovulation rate, greater in HEAT group than GnRH and Control groups (Control= 72.5%; GnRH= 81.25%; HEAT group= 90.71%; P= 0.0024). Artificial insemination pregnancy rates was greater in HEAT group (57.09% (769/1347) than in Control and GNRH groups, with positive effect of GnRH injection at the time of TAI in P/AI (Control= 36.18% (169/467), GnRH= 45.95% (216/470); P<0.0001). In conclusion, GnRH application in cows with low HEATSC (1 and 2) is a simple strategy, requiring no changes in TAI management to increase pregnancy rates in postpartum beef cows submitted to progesterone–estradiol-based TAI protocols, without reaching, however, the pregnancy rates of cows that demonstrate high estrus expression at the TAI.  相似文献   

16.
This study was conducted to evaluate the effect of a 12-h light, 12-h dark (12L : 12D) photoperiod of green light during day 1 to day 18 of incubation time, on embryo growth, hormone concentration and the hatch process. In the test group, monochromatic light was provided by a total of 204 green light-emitting diodes (522 nm) mounted in a frame which was placed above the top tray of eggs to give even spread of illumination. No light–dark cycle was used in the control group. Four batches of eggs (n=300/group per batch) from fertile Ross 308 broiler breeders were used in this experiment. The beak length and crown–rump length of embryos incubated under green light were significantly longer than that of control embryos at day 10 and day 12, respectively (P<0.01). Furthermore, green light-exposed embryos had a longer third toe length compared with control embryos at day 10, day 14 and day 17 (P=0.02). At group level (n=4 batches), light stimulation had no effect on chick weight and quality at take-off, the initiation of hatch and hatch window. However, the individual hatching time of the light exposure focal chicks (n=33) was 3.4 h earlier (P=0.49) than the control focal chicks (n=36) probably due to the change in melatonin rhythm of the light group. The results of this study indicate that green light accelerates embryo development and alters hatch-related hormones (thyroid and corticosterone), which may result in earlier hatching.  相似文献   

17.
The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer’s disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1–42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1–42 oligomers in a dose-dependent manner (p < 0.05) and this trend could be recovered by insulin treatment (p < 0.05). However, the expressions of total Akt and mTOR were invariant (p > 0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1–42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions.  相似文献   

18.
19.
Glutamate-mediated excitotoxicity is known to cause secondary brain damage following stroke and traumatic brain injury (TBI). However, clinical trials using NMDA antagonists failed. Thus, glial excitatory amino acid transporters (EAATs) might be a promising target for therapeutic intervention. METHODS AND RESULTS: We examined expression of EAAT1 (GLAST) and EAAT2 (Glt-1) in 36 TBI cases by immunohistochemistry. Cortical expression of both EAATs decreased rapidly and widespread throughout the brain (in lesional, adjacent and remote areas) following TBI. In the white matter numbers of EAAT1+ parenchymal cells increased 39-fold within 24h (p<0.001) and remained markedly elevated till later stages in the lesion (90-fold, p<0.01) and in peri-lesional regions (86-fold, p<0.01). In contrast, EAAT2+ parenchymal cells and EAAT1+ or EAAT2+ perivascular cells did not increase significantly. Within the first days following TBI mainly activated microglia and thereafter mainly reactive astrocytes expressed EAAT1. Perivascular monocytes and foamy macrophages lacked EAAT1 immunoreactivity. We conclude that following TBI i) loss of cortical EAATs contributes to secondary brain damage, ii) glial EAAT1 expression reflects a potential neuroprotective function of microglia and astrocytes, iii) microglial EAAT1 expression is restricted to an early stage of activation, iv) blood-derived monocytes do not express EAAT1 and v) pharmacological modification of glial EAAT expression might further limit neuronal damage.  相似文献   

20.
The combined effects of temperature and ammonia concentration on the percent fertilization and percent hatching in Crassostrea ariakensis were examined under laboratory conditions using the central composite design and response surface methodology. The results indicated: (1) The linear effects of temperature and ammonia concentration on the percent fertilization were significant (P<0.05), and the quadratic effects were highly significant (P<0.01). The interactive effect between temperature and ammonia concentration on the percent fertilization was not significant (P>0.05). (2) The linear effect of temperature on the percent hatching was highly significant (P<0.01), and that of ammonia concentration was nonsignificant (P>0.05). The quadratic effects of temperature and ammonia concentration on the percent hatching were highly significant (P<0.01). The interaction on the percent hatching was not significant (P>0.05). Temperature was more important than ammonia in influencing the fertilization and hatching in C. ariakensis. (3) The model equations of the percent fertilization and hatching towards temperature and ammonia concentration were established, with the coefficients of determination R2=99.4% and 99.76%, respectively. Through the lack-of-fit test, these models were of great adequacy. The predictive coefficients of determination for the two model equations were as high as 94.6% and 98.03%, respectively, showing that they could be used for practical projection. (4) Via the statistical simultaneous optimization technique, the optimal factor level combination, i.e., 25 °C/0.038 mg mL−1, was derived, at which the greatest percent fertilization 95.25% and hatching 83.26% was achieved, with the desirability being 97.81%. Our results may provide advantageous guidelines for the successful reproduction of C. ariakensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号