首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

2.
We developed a computer-based system for controlling the photoperiod and irradiance of UV-B and white light from a 5 × 5 light-emitting diode (LED) matrix (100 × 100 mm). In this system, the LED matrix was installed in each of four irradiation boxes and controlled by pulse-width modulators so that each box can independently emit UV-B and white light at irradiances of up to 1.5 and 4.0 W m−2, respectively, or a combination of both light types. We used this system to examine the hatchabilities of the eggs of four Tetranychus spider mite species (T. urticae, T. kanzawai, T. piercei and T. okinawanus) collected from Okinawa Island under UV-B irradiation alone or simultaneous irradiation with white light for 12 h d−1 at 25 °C. Although no eggs of any species hatched under the UV-B irradiation, even when the irradiance was as low as 0.02 W m−2, the hatchabilities increased to >90% under simultaneous irradiation with 4.0 W m−2 white light. At 0.06 W m−2 UV-B, T. okinawanus eggs hatched (15% hatchability) under simultaneous irradiation with white light, whereas other species showed hatchabilities <1%. These results suggest that photolyases activated by white light may reduce UV-B–induced DNA damage in spider mite eggs and that the greater UV-B tolerance of T. okinawanus may explain its dominance on plants in seashore environments, which have a higher risk of exposure to reflected UV-B even on the undersurface of leaves. Our system will be useful for further examination of photophysiological responses of tiny organisms because of its ability to precisely control radiation conditions.  相似文献   

3.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

4.
Protocorm-like bodies (PLBs) or thin cell layers (TCLs) derived from PLBs of hybrid Cymbidium Twilight Moon 'Day Light' can induce new or neo-PLBs on Teixeira Cymbidium (TC) medium, which contains 0.1 mg/L a- naphthaleneacetic acid, 0.1 mg/L kinetin, 2 g/L tryptone and 20 g/L sucrose, and is solidified with 8 g/L Bacto agar. This study aimed to assess the response ofneo-PLB formation to an ethylene-liberating compound (2-chloroethylphosphonic acid (CEPA)), to two ethylene inhibitors (silver nitrate (AgNO3) and aminoethoxyvinylglycine (AVG)), and to aeration (made possible by using Milliseal~ or autoclaved filter paper). AgNO3 at 1 or 2 mg/L in TC medium significantly increased the fresh weight of PLBs while 1 mg/L of AgNO3 also showed a significant increase in the number ofneo-PLB from both half-PLBs and from tTCLs. In contrast, AVG and CEPA inhibited neo-PLB formation. Neo-PLB formation from half-PLB or TCL explants in the presence of aeration resulted in significantly lower neo-PLB weight. The use of AgNO3 and aeration are alternative means to mass produce neo-PLBs for micropropagation purposes.  相似文献   

5.
Seagrasses worldwide are highly vulnerable to, and at increasing risk from reduced light availability, and robust light thresholds are required for evaluating future impacts of changing light conditions. We tested the morphological response (shoot density and growth) of four Indo-West Pacific seagrass species (Cymodocea serrulata, Halodule uninervis, Halophila ovalis and Zostera muelleri) to six daily light levels ranging from 0 to 23 mol m−2 d−1 (0–70% surface irradiance) in cool (∼23 °C) and warm temperatures (∼28 °C) over 14 weeks. The impact of light limitation on shoot densities and growth rates was higher at warm than at cool temperatures, and for Z. muelleri and H. ovalis than for C. serrulata and H. uninervis, in terms of both the time taken for the low light treatment to take effect and the predicted time to shoot loss (e.g. 17–143 days at 0 mol m−2 d−1). Using fitted curves we estimated temperature-dependent thresholds (with estimates of uncertainty) for 50% and 80% protection of growth and shoot density, defined here as “potential light thresholds” in recognition that they were derived under experimental conditions. Potential light thresholds that maintained 50% and 80% of seagrass shoot density fell within the ranges 1.1–5.7 mol m−2 d−1 and 3.8–10.4 mol m−2 d−1, respectively, depending on temperature and species. Light thresholds calculated in separate in situ studies for two of the same species produced comparable results. We propose that the upper (rounded) values of 6 mol m−2 d−1 and 10 mol m−2 d−1 can be used as potential light thresholds for protecting 50% and 80% of shoot density for these four species over 14 weeks. As management guidelines should always be more conservative than thresholds for biological declines, we used error estimates to provide a quantitative method for converting potential light thresholds into guidelines that satisfy this criterion. The present study demonstrates a new approach to deriving potential light thresholds for acute impacts, describes how they can be applied in management guidelines and quantifies the timescales of seagrass decline in response to light limitation. This method can be used to further quantify cumulative impacts on potential light thresholds.  相似文献   

6.
Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100 μmol photons m−2 s−1 light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100 μmol photons m−2 s−1 light condition. Under 15 μmol photons m−2 s−1 light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803.  相似文献   

7.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

8.
Tetrastigma hemsleyanum Diels et Gilg was grown under full sunlight and moderate and high levels of shade for one month to evaluate its photosynthetic and chlorophyll fluorescence response to different light conditions. The results showed that T. hemsleyanum attained greatest leaf size and Pn when cultivated with 67% shade. Leaves of seedlings grown with 90% shade were the smallest. Leaf color of plants grown under full sunlight and 50% shade was yellowish-green. The Pn value increased rapidly as PPFD increased to 200 μmol m?2 s?1 and then increased slowly to a maximum, followed by a slow decrease as PPFD was increased to 1000 μmol m?2 s?1. Pn was highest for the 67% shade treatment and the LSP for this shade treatment was 600 μmol m?2 s?1. Full sunlight and 50% shade treatments resulted in significant reduction of ETR and qP and increased NPQ. Chl a, Chl b and total chlorophyll content increased and Chl a/b values decreased with increased shading. Results showed that light intensity greater than that of 50% shade depressed photosynthetic activity and T. hemsleyanum growth. Irradiance less than that of 75% shade limited carbon assimilation and led to decreased plant growth. Approximately 67% shade is suggested to be the optimum light irradiance condition for T. hemsleyanum cultivation.  相似文献   

9.
Domoic acid (DA) poisoning in the southern part of the California Current System has been associated typically with blooms of Pseudo-nitzschia australis. The environmental variables that promote growth and DA production in the Mexican part of this system have not been identified. The present study investigated the effect of temperature and two nutrient ratios on the growth characteristics and DA content of two (BTS-1, BTS-2) P. australis strains isolated from the Pacific coast of northern Baja California peninsula, México. Of the different temperatures assayed (10, 12, 14, 15, 18 and 20 °C), the maximum cell abundance was detected at 12 °C for BTS-2 and 14 °C for BTS-1. The highest maximum specific growth rate (1.69 day−1) was measured at 15 °C for BTS-2. With the exception of cells maintained at 15 °C, growth characteristics were similar in P. australis cultured in a high Si:NO3 (2.5) or low Si:NO3 (0.5) ratio at each temperature. Dissolved (dDA) and cellular (cDA) DA content measured at the stationary phase of growth was similar in cells cultivated at the different temperatures. No difference in cDA (between 0.11 and 1.87 pg DA cell−1) was observed in cells cultivated at the two nutrient ratios. To evaluate if P. australis accumulates DA (cDA + dDA) at different stages of the culture and not only during the stationary phase of growth, the BTS-1 strain was cultivated at 14 °C and the content of this toxin was measured during culture development. The cultures were maintained at high (HL; 200 μmol quanta m−2 s−1) and low light (LL; 30 μmol quanta m−2 s−1) and in the two nutrient ratios to evaluate the effect of these variables on DA content. The photosynthetic performance and pigment concentration were measured as indicators of the physiological condition of the cells. cDA was detected in all culture conditions and during the different stages of growth. The highest DA content was measured during the lag phase of growth and it was present mainly in the medium (dDA = 70.83 pg DA cell−1). Cells cultivated at HL produced more DA than LL cultured cells. P. australis cultured in HL presented lower photosynthetic rates than LL cells and had similar concentrations of photoprotective pigments and the highest maximum photosynthetic rates were detected during the lag phase of growth in all culture conditions. The results demonstrate that P. australis from northern Baja California peninsula presents a narrow temperature range for optimal growth under batch culture conditions. P. australis produce DA at different stages of growth, and DA content was related to the light intensity at which the cells were cultivated.  相似文献   

10.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

11.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

12.
Field trials were carried out to evaluate six treatments combining biological agents and chemical fungicides applied via chemigation against white mold (Sclerotinia sclerotiorum) on processing tomatoes. The experiment was performed in Goiânia, Brazil, with tomato hybrid Heinz 7155 in 2009 and 2010 in a field previously infested with S. sclerotiorum sclerotia. Treatments were arranged in a randomized complete block design in a 2 × 3 factorial structure (with and without Trichoderma spp. 1.0 × 109 viable conidia mL−1 ha−1) × fluazinam (1.0 L ha−1), procimidone (1.5 L ha−1) and control, applied by drip irrigation. Treatments were applied three times 10 days apart, starting one month after transplanting. Each treatment consisted of plots with three 72-meter rows with four plants m−1 and 1.5 m spacing between rows, with three replications. Based on disease incidence evaluated weekly, the area under the disease progress curve (AUDPC) was obtained. Yield and its components were evaluated in addition to fruit pH and °Brix. Results were subjected to ANOVA, Scott-Knott (5%), and regression analysis. Biocontrol using Trichoderma spp. via chemigation singly or in combination with synthetic fungicides fluazinam and procimidone reduced AUDPC and increased fruit yield up to 25 t ha−1. The best treatment for controlling white mold also increased pulp yield around 1.0 and 7.0 t ha−1 in 2009 and 2010, respectively. The present work demonstrated the advantages of white mold biological control in processing tomato crops, where drip irrigation favored Trichoderma spp. delivery close to the plants and to the inoculum source.  相似文献   

13.
Taste and odor (T & O) episodes always cause strong effects on drinking water supply system. Luanhe River diversion into Tianjin City in China is an important drinking water resource. Massive growth of a benthic filamentous cyanobacterium with geosmin production in the open canal caused a strong earthy odor episode in Tianjin. On the basis of the morphological and molecular identification of this cyanobacterium as Oscillatoria limosa Agardh ex Gomont, the genetic basis for geosmin biosynthesis and factors influencing growth and geosmin production of O. limosa CHAB 7000 were studied in this work. A 2268-bp open reading frame, encoding 755 amino acids, was amplified and characterized as the geosmin synthase gene (geo), followed by a cyclic nucleotide-binding protein gene (cnb). Phylogenetic analysis implied that the evolution of the geosmin genes in O. limosa CHAB 7000 might involve a horizontal gene transfer event. Examination on the growth and geosmin production of O. limosa CHAB 7000 at different light intensities showed that the maximum geosmin production was observed at 10 μmol photons m−2 s−1, while the optimum growth was at 60 μmol photons m−2 s−1. Under three temperature conditions (15 °C, 25 °C, and 35 °C), the maximum growth and geosmin production were observed at 25 °C. Most amounts of geosmin were retained in cells during the growth phase, but high temperature and low light intensity increased the release of geosmin into the medium, implying that O. limosa CHAB 7000 had a high potential harm for the release of geosmin from its cells at these adverse conditions.  相似文献   

14.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

15.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

16.
CO2 exchange and water relations of selected lichen species were investigated in the field and also in the laboratory, at a height of 3106 m above sea level in the Austrian Alps, during the short snowless summer period from middle of July to the end of August. In the course of the field investigations, clear summer days were quite rare. Altogether 14 diurnal courses of CO2 exchange were measured spanning a time of 255 h of measurements.The air temperatures measured close to the ground ranged between −0.7 and 17.1 °C and their daily fluctuation was lower than 10.7 °C. Fog was present for more than one-third of the measuring period and relative humidity (RH) exceeded 90% in almost half of the time. Temperature optimum of net photosynthesis (NP) of Xanthoria elegans and Brodoa atrofusca determined in the laboratory increased with increasing photosynthetic photon flux density (PPFD) from 1.5 to 11.3 °C and the maximal CO2 uptake was found to be at 10 °C. In the field the lichens were metabolically active at air temperatures between −0.7 and 12.8 °C. The light compensation points (LCP) of both lichen species ranged in the laboratory between 50 and 200 μmol m−2 s−1 PPFD (0–20 °C) and in the field between 22 and 56 μmol m−2 s−1 PPFD (3–8 °C). At 30 °C the NP of X. elegans surpassed the LCP, whereas B. atrofusca remained below the LCP. NP in X. elegans did not reach light saturation at 1500 μmol m−2 s−1 PPFD. NP in B. atrofusca reached light saturation at low temperatures (−5 to +5 °C). At higher temperatures light saturation was almost detectable. On sunny days the lichens in the field were metabolically active only for 3 h during the early morning. In this time they reached the maximal values or values close to their maximal CO2 uptake in situ. Under dry weather conditions the lichens dried out to a minimal water content (WC) of 5–12% which is below the moisture compensation point (MCP) of 34–25%. The optimal WC was between 90% and 120% dry weight (DW) in B. atrofusca and Umbilicaria cylindrica, in X. elegans between 140% and 180% DW. Species specific differences in water-holding capacity, desiccation intensity and in the compensation points of temperature, light and moisture are responsible for differences in metabolic activity. The lichens were active during less than half of the observation time. Total time of NP of X. elegans was 24% of the measuring period, for U. cylindrica 22% and for B. atrofusca 16%.  相似文献   

17.
Asymbiotic germination of immature seeds (embryos), and mature seeds and micropropagation of Spathoglottis plicata were described. Effects of three nutrition media namely, Murashige & Skoog (MS); Phytamax (PM); and Phyto-Technology orchid seed sowing medium (P723), two carbon sources such as glucose and sucrose at 2–3% (w/v), two plant growth regulators such as 6-benzylaminopurine (BAP; 0.5–3.0 mg l 1) and α-naphthalene acetic acid (NAA; 0.5–2.0 mg l 1) and peptone (2.0 g l 1) were examined on seed germination, early protocorm development and micropropagation. The maximum germination of mature seeds (95%) was recorded in PM medium supplemented with 2% (w/v) sucrose + 2.0 g l 1 peptone. For germination of embryos P723 medium supplemented with 1.0 mg l 1 BAP proved best. Multiple shoot buds or protocorm-like bodies (PLBs) were produced from stem segments of in vitro raised seedlings. Both direct organogenesis and embryogenesis were observed and the morphogenetic response was initiated by different concentrations and combinations of PGRs. The optimum PGR combination for maximal PLB regeneration was 1.0 mg l 1 NAA + 2.5 mg l 1 BAP, while 1.0 mg l 1 NAA + 1.0 mg l 1 BAP for shoot bud development. Strong and stout root system was induced in half strength PM medium supplemented with 0.5 mg l 1 IAA. The well-rooted plantlets were transferred to pots containing a potting mixture composed of saw dust, coconut coir, humus, and coal pieces at 1:1:1:2 (w/w) with 80% survival in outside environment and flowered after two years of transfer.  相似文献   

18.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

19.
《Aquatic Botany》2005,81(3):265-275
Palatability to snail herbivory (Radix swinhoei H. Adams) and C/N ratios were assessed for Vallisneria natans (Lour.) Hara, in three different experimental light regimes (midday fluxes respectively 280 μmol m−2 s−1, 15 μmol m−2 s−1, and a variable intensity between these two). Higher light intensity as well as prolonged photoperiods increased palatability and growth, and improved C/N ratio by decreasing N content. Snail growth was slightly increased but juvenile survivorship decreased under higher light. The results suggest that the availability of light may affects intraspecific variation in palatability of V. natans.  相似文献   

20.
《Aquatic Botany》2007,87(2):116-126
Zostera marina distribution is circum-global and tolerates a wide range of environmental conditions. Consequently, it is likely that populations have adapted to local environmental conditions of light, temperature and nutrient supply. We compared Z. marina growth dynamics over a 2-year period in relation to environmental characters at Jindong Bay, South Korea and Yaquina Bay, Oregon, USA. Water temperature in Jindong Bay showed stronger seasonal variation (summer–winter ΔT = 20 °C) than in Yaquina Bay (summer–winter ΔT < 5 °C). Underwater irradiance in Jindong Bay exhibited a winter maximum, while in Yaquina Bay underwater light exhibited a summer maximum. Integrated annual underwater irradiance during 2003 was 2200 and 1200 mol photons m−2 year−1 in Korea and Oregon, respectively. Z. marina shoot density, biomass and integrated production were not significantly different between the two study sites. Seasonal Z. marina growth in Jindong Bay appeared to be controlled by temperature and light, while the growth pattern in Yaquina Bay suggested light regulation. Several seagrass parameters were correlated to phosphate concentrations, even though nutrients did not appear limiting. Despite differences in environmental factors, relative growth rates and temporal growth dynamics between study sites, integrated annual leaf production was quite similar at 335 and 353 g DW m−2 year−1 in the Jindong and Yaquina Bay study sites. We suggest that Z. marina net productivity is acclimated to the local environmental conditions and may be a general characteristic of temperate seagrass populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号