首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

2.
Measurement of the light response of photosynthetic CO2 uptake is often used as an implement in ecophysiological studies. A method is described to calculate photosynthetic parameters, such as the maximum rate of whole electron transport and dissimilative respiration in the light, from the light response of CO2 uptake. Examples of the light-response curves of flag leaves and ears of wheat (Triticum aestivum cv. ARKAS) are shown.Abbreviations and symbols A net photosynthesis rate - D 1 rate of dissimilative respiration occurring in the light - f loss factor - I incident PPFD - I effective absorbed PPFD - J rate of whole electron transport - J m maximum rate of whole electron transport - p c intercellular CO2 partial pressure - PPFD photosynthetic photon flux density - q effectivity factor for the use of light (electrons/quanta) - absorption coefficient - I * CO2 compensation point in the absence of dissimilative respiration (bar) - II conversion factor for calculation of CO2 uptake from the rate of whole electron transport - convexity factor Gas-exchange rates relate to the projective area and are given in mol·m-2·s-1. Electron-transport rates are given in mol electrons·m-2·s-1; PPFD is given in mol quanta·m-2·s-1.  相似文献   

3.
The importance of reduced leaf conductance (stomatal and boundary layer) in limiting photosynthetic rates during water stress was studied in Encelia frutescens, a drought-deciduous leaved subshrub of the Mohave and Sonoran Deserts. Light-saturated CO2 assimilation rates of greenhouse grown plants decreased from 42.6±1.6mol CO2 m-2 s-1 (x±s.e.) to 1.7±1.7 mol CO2 m-2s-1 as leaf water potential decreased from-1.5 MPa to-4.0 MPa. The dependence of light saturated, CO2 assimilation rate on leaf intercellular CO2 concentrations between 60 and 335 l l-1 was also determined as leaf water potential decline. This enabled us to compare the effects of leaf water potentials on limitations to carbon assimilation imposed by leaf conductance and by intrinsic photosynthetic capacity. Both leaf conductance and intrinsic photosynthetic capacity decreased with decreasing leaf water potential, but the decrease in leaf conductance was proportionately greater. The relative stomatal limitation, defined as the percent limitation in photosynthetic rate due to the presence of gas-phase diffusional barriers, increased from (x±s.e.) to 41±3% as water potentials became more negative. Since both leaf conductance and intrinsic photosynthetic capacity were severely reduced in an absolute sense, however, high photosynthetic rates could not have been restored at low leaf water potentials without simultaneous increases in both components.  相似文献   

4.
Vodnik  D.  Pfanz  H.  Maček  I.  Kastelec  D.  Lojen  S.  Batič  F. 《Photosynthetica》2002,40(4):575-579
High abundance of cockspur (Echinochloa crus-galli) at the geothermal carbon dioxide spring area in Staveinci indicates that this species is able to grow under widely varying CO2 concentrations. Living cockspur plants can even be found very close to gas-releasing vents where growth is significantly reduced. Plant height correlated well with CO2 exposure. The 13C value of the CO2 spring air was –3.9 and 13C values of high-, medium-, and low-CO2 plants were –10.14, –10.44, and –11.95 , respectively. Stomatal response directly followed the prevailing CO2 concentrations, with the highest reduction of stomatal conductance in high CO2 concentration grown plants. Analysis of the curves relating net photosynthetic rate to intercellular CO2 concentration (P N-Ci curves) revealed higher CO2 compensation concentration in plants growing at higher CO2 concentration. This indicates adjustment of respiration and photosynthetic carbon assimilation according to the prevailing CO2 concentrations during germination and growth. There was no difference in other photosynthetic parameters measured.  相似文献   

5.
The effect of long-term exposure to elevated levels of CO2 on biomass partitioning, net photosynthesis and starch metabolism was examined in cotton. Plants were grown under controlled conditions at 350, 675 and 1000 l l-1 CO2. Plants grown at 675 and 1000 l l-1 had 72% and 115% more dry weight respectively than plants grown at 350 l l-1. Increases in weight were partially due to corresponding increases in leaf starch. CO2 enrichment also caused a decrease in chlorophyll concentration and a change in the chlorophyll a/b ratio. High CO2 grown plants had lower photosynthetic capacity than 350 l l-1 grown plants when measured at each CO2 concentration. Reduced photosynthetic rates were correlated with high internal (non-stomatal) resistances and higher starch levels. It is suggested that carbohydrate accumulation causes a decline in photosynthesis by feedback inhibition and/or physical damage at the chloroplast level.Abbreviations Ci internal CO2 concentration - Chl chlorophyll - DMSO dimethylsulfoxide - HSD honestly significant difference (procedure) - MCW methanolchloroform-water - Pi inorganic phosphate - S.E.M. standard error of mean  相似文献   

6.
Summary The characteristics of the photosynthetic apparatus of 11 Hawaiian Euphorbia species, all of which possess C4 photosynthesis but range from arid habitat, drought-deciduous shrubs to mesic or wet forest evergreen trees and shrubs, were investigated under uniform greenhouse conditions. Nine species exhibited CO2 response curves typical of C4 plants, but differed markedly in photosynthetic capacity. Light-saturated CO2 uptake rates ranged from 48 to 52 mol m-2 s-1 in arid habitat species to 18 to 20 mol m-2 s-1 in mesic and wet forest species. Two possessed unusual CO2 response curves in which photosynthesis was not saturated above intercellular CO2 pressures [p(CO2)] of 10 to 15 Pa, as typically occurs in C4 plants.Both leaf (g1) and mesophyll (gm) conductances to CO2 varied widely between species. At an atmospheric p(CO2) of 32 Pa, g1 regulated intercellular p(CO2) at 12–15 Pa in most species, which supported nearly maximum CO2 uptake rates, but did not result in excessive transpiration. Intercellular p(CO2) was higher in the two species with unusual CO2 response curves. This was especially apparent in E. remyi, which is native to a bog habitat. The regulation of g1 and intercellular p(CO2) yielded high photosynthetic water use efficiencies (P/E) in the species with typical CO2 response curves, whereas P/E was much lower in E. remyi.Photosynthetic capacity was closely related to leaf nitrogen content, whereas correlations with leaf morphological characteristics and leaf cell surface area were not significant. Thus, differences in photosynthetic capacity may be determined primarily by investment in the biochemical components of the photosynthetic apparatus rather than by differences in diffusion limitations. The lower photosynthetic capacities in the wet habitat species may reflect the lower light availability. However, other factors, such as reduced nutrient availability, may also be important.  相似文献   

7.
Summary The rate of CO2 assimilation at light saturation and an intercellular CO2 concentration of 350 l l-1 (photosynthetic capacity), measured in leaves of Eucalyptus pauciflora, E. behriana, E. delegatensis and Acacia melanoxylon, declined over the course of cloudless days under naturally varying environmental conditions as well as under constant optimal conditions for high CO2 uptake. Since the capacity did not recover during the light period, it was different from the midday depression of gas exchange. The change appeared to be caused neither by the diurnal variation of total leaf water potential, by photoinhibition of redox-reaction centres in photosystems nor by changes in the intrinsic properties of Ribulose-bisphosphate carboxylase-oxygenase. The decline was more pronounced in winter than in summer. It was related to the duration of illumination or the cumulative carbon gain. It was reversible in the following dark phase, and it did not occur on changeable days with short peaks of high light.Despite the decline in photosynthetic capacity, the initial slope of the CO2 response of net photosynthesis, as obtained at low intercellular CO2 concentrations, remained constant during the day, but declined at night when photosynthetic capacity recovered. In all cases stomatal conductance varied in parallel with photosynthetic capacity. The relevance of changes in photosynthetic capacity for the intercellular CO2 concentration is discussed.Abbreviations and symbols A CO2 assimilation - ABA abscisic acid - Ac350 photosynthetic capacity at ci=350l l-1 - ci intercellular CO2 concentration - g leaf conductance to water vapour - I photon flux density (irradiance) - P air pressure - Pi inorganic phosphate - Rd net CO2 release at * - Rubisco Ribulose-bisphosphate carboxylase-oxygenase - RuBP Ribulose-bisphosphate - T leaf temperature - w leaf-to-air water vapour concentration difference - A/ci carboxylation efficiency at low ci - * light-independent CO2 compensation point - total leaf water potential  相似文献   

8.
In the field, photosynthesis of Acer saccharum seedlings was rarely light saturated, even though light saturation occurs at about 100 mol quanta m-2 s-1 photosynthetic photon flux density (PPFD). PPFD during more than 75% of the daylight period was 50 mol m-2 s-1 or less. At these low PPFD's there is a marked interaction of PPFD with the initial slope (CE) of the CO2 response. At PPFD-saturation CE was 0.018 mol m-2 s-1/(l/l). The apparent quantum efficiency (incident PPFD) at saturating CO2 was 0.05–0.08 mol/mol. and PPFD-saturated CO2 exchange was 6–8 mol m-2 s-1. The ratio of internal CO2 concentration to external (C i /C a ) was 0.7 to 0.8 except during sunflecks when it decreased to 0.5. The decrease in C i /C a during sunflecks was the result of the slow response of stomates to increased PPFD compared to the response of net photosynthesis. An empirical model, which included the above parameters was used to simulate the measured CO2 exchange rate for portions of two days. Parameter values for the model were determined in experiments separate from the daily time courses being sumulated. Analysis of the field data, partly through the use of simulations, indicate that the elimination of sunflecks would reduce net carbon gain by 5–10%.List of symbols A measured photosynthetic rate under any set of conditions (mol m-2 s-1) - A m (atm) measured photosynthetic rate at saturating PPFD, 350 l/l CO2 and 21% (v/v) O2 (mol m-2 s-1) - C constant in equation of Smith (1937, 1938) - C a CO2 concentration in the air (l/l) - C i CO2 concentration in the intercellular air space (l/l) - C i /* C i corrected for CO2 compensation point, i.e., C i -I *, (l/l) - CE initial slope of the CO2 response of photosynthesis (mol m-2 s-1/(l/l)) - CEM CE at PPFD saturation - E transpiration rate (mmol m-2 s-1) - F predicted photosynthetic rate (mol m-2 s-1) - G leaf conductance to H2O (mol m-2 s-1) - I photosynthetic photon flux density (mol m-2 s-1) - N number of data points - P m predicted photosynthetic rate at saturating CO2 and given PPFD (mol m-2 s-1) - P ml predicted photosynthetic rate at saturating CO2 and PPFD (mol m-2 s-1) - R d residual respiratory rate (mol m-2 s-1) - T a air temperature (°C) - T l leaf temperature (°C) - V reaction velocity in equation of Smith (1937, 1938) - V max saturated reaction velocity in equation of Smith (1937, 1938) - VPA vapor pressure of water in the air (mbar/bar) - VPD vapor pressure difference between leaf and air (mbar/bar) - X substrate concentration in equation of Smith (1937, 1938) - initial slope of the PPFD response of photosynthesis at saturating CO2 (mol CO2/mol quanta) - (atm) initial slope of the PPFD response of photosynthesis at 340 l/l CO2 and 21% (v/v) O2 (mol CO2/mol quanta) - I * CO2 compensation point after correction for residual respiration (l/l) - PPFD compensation point (mol m-2 s-1)  相似文献   

9.
Summary The effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua L. (sweetgum) and Pinus taeda L. (loblolly pine) seedlings were examined for individuals grown from seed under high (1000 mol·m-2·s-1) and low (250 mol·m-2·s-1) photosynthetic photon flux density at 350, 675 and 1000 l·l-1 CO2. At 8 weeks of age, half the seedlings in each CO2-irradiance treatment were subjected to a drying cycle which reduced plant water potential to about -2.5 MPa in the most stressed plants, while control plants remained well-watered (water potentials of -0.3 and -0.7 MPa for sweetgum and loblolly pine, respectively). During this stress cycle, whole seedling net photosynthesis, transpiration and stomatal conductance of plants from each CO2-irradiance-water treatment were measured under respective growth conditions.For both species, water stress effects on gas exchange were greatest under high irradiance conditions. Waterstressed plants had significantly lower photosynthesis rates than well-watered controls throughout most of the drying cycle, with the most severe inhibition occurring for low CO2, high irradiance-grown sweetgum seedlings. Carbon dioxide enrichment had little effect on gas exchange rates of either water-stressed or well-watered loblolly pine seedlings. In contrast, water stress effects were delayed for sweetgum seedlings grown at elevated CO2, particularly in the 1000 l·l-1 CO2, high irradiance treatment where net photosynthesis, transpiration and conductance of stressed plants were 60, 36 and 33% of respective control values at the end of the drying cycle. Development of internal plant water deficits was slower for stressed sweetgum seedlings grown at elevated CO2. As a result, these seedlings maintained higher photosynthetic rates over the drying cycle than stressed sweetgum seedlings grown at 350 l·l-1 CO2 and stressed loblolly pine seedlings grown at ambient and enriched CO2 levels. In addition, water-stressed sweetgum seedlings grown at elevated CO2 exhibited a substantial increase in water use efficiency.The results suggest that with the future increase in atmospheric CO2 concentration, sweetgum seedlings should tolerate longer exposure to low soil moisture, resulting in greater first year survival of seedlings on drier sites of abandoned fields in the North Carolina piedmont.  相似文献   

10.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

11.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   

12.
This study reports survival and physiological responses of micropropagated Ceratonia siliqua L. cvs. Galhosa and Mulata plants during ex vitro acclimatization under ambient (AC; 330 mol mol–1) or elevated (EC; 810 mol mol–1) CO2 concentration and a photosynthetic photon flux density of 125 mol m–2 s–1. CO2 enrichment during acclimatization did not improve survival rate that was around 80 % for both treatments. Eight weeks after ex vitro transplantation, photosynthetic capacity and apparent quantum yield in acclimatized leaves were higher in comparison with those in in vitro-grown leaves, without any significant difference between CO2 treatments. Chlorophyll content increased after acclimatization. However, EC led to a decrease in the total amount of chlorophyll in new leaves of both cultivars, compared to those grown at AC. Soluble sugars and starch contents were not markedly affected by growth EC, although starch had significantly increased after transfer to ex vitro conditions. EC induced an increase in the stem elongation and in the effective life of leaves, and a decrease in the number of new leaves.  相似文献   

13.
Effects of elevated CO2 (525 and 700 L L–1), and a control (350 L L–1 CO2), on biochemical properties of a Mollic Psammaquent soil in a well-established pasture of C3 and C4 grasses and clover were investigated with continuously moist turves in growth chambers over four consecutive seasonal temperature regimes from spring to winter inclusive. After a further spring period, half of the turves under 350 and 700 L L–1 were subjected to summer drying and were then re-wetted before a further autumn period; the remaining turves were kept continuously moist throughout these additional three consecutive seasons. The continuously moist turves were then pulse-labelled with 14C-CO2 to follow C pathways in the plant/soil system during 35 days.Growth rates of herbage during the first four seasons averaged 4.6 g m–2 day–1 under 700 L L–1 CO2 and were about 10% higher than under the other two treatments. Below-ground net productivity at the end of these seasons averaged 465, 800 and 824 g m–2 in the control, 525 and 700 L L–1 treatments, respectively.in continuously moist soil, elevated CO2 had no overall effects on total, extractable or microbial C and N, or invertase activity, but resulted in increased CO2-C production from soil, and from added herbage during the initial stages of decomposition over 21 days; rates of root decomposition were unaffected. CO2 produced h–1 mg–1 microbial C was about 10% higher in the 700 L L–1 CO2 treatment than in the other two treatments. Elevated CO2 had no clearly defined effects on N availability, or on the net N mineralization of added herbage.In the labelling experiment, relatively more 14C in the plant/soil system occurred below ground under elevated CO2, with enhanced turnover of 14C also being suggested.Drying increased levels of extractable C and organic-N, but decreased mineral-N concentrations; it had no effect on microbial C, but resulted in lowered microbial N in the control only. In soil that had been previously summer-dried, CO2 production was again higher, but net N mineralization was lower, under elevated CO2 than in the control after autumn pasture growth.Over the trial period of 422 days, elevated CO2 generally appears to have had a greater effect on soil C turnover than on soil C pools in this pasture ecosystem.  相似文献   

14.
Summary The effects of CO2 enrichment on the growth, biomass partitioning, photosynthetic rates, and leaf nitrogen concentration of a grass, Bromus mollis (C3), were investigated at a favorable and a low level of nitrogen availability. Despite increases in root: shoot ratios, leaf nitrogen concentrations were decreased under CO2 enrichment at both nitrogen levels. For the low-nitrogen treatment, this resulted in lower photosynthetic rates measured at 650 l/l for the CO2-enriched plants, compared to photosynthetic rates measured at 350 l/l for the non-enriched plants. At higher nitrogen availability, photosynthetic rates of plants grown and measured at 650 l/l were greater than photosynthetic rates of the non-enriched plants measured at 350 l/l. Water use efficiency, however, was increased in enriched plants at both nitrogen levels. CO2 enrichment stimulated vegetative growth at both high and low nitrogen during most of the vegetative growth phase but, at the end of the experiment, total biomass of the high and low CO2 treatments did not differ for plants grown at low nitrogen availability. While not statistically significant, CO2 tended to stimulate seed production at high nitrogen and to decrease it at low nitrogen.  相似文献   

15.
A method of measuring CO2gas exchange (caused, for example, by microalgal photosynthesis on emersed tidal mudflats) using open flow IR gas analyzers is described. The analyzers are integrated in a conventional portable photosynthesis system (LI-6400, LI-COR, Nebraska, USA), which allows manipulation and automatic recording of environmental parameters at the field site. Special bottomless measuring chambers are placed directly on the surface sediment. Measurements are performed under natural light conditions and ambient CO2concentrations, as well as under different CO2concentrations in air, and various PAR radiation levels produced by a LED light source built into one of the measurement chambers. First results from tidal channel banks in a north Brazilian mangrove system at Bragança (Pará, Brazil) under controlled conditions show a marked response of CO2assimilation to CO2concentration and to irradiance. Photosynthesis at 100molmol–1CO2in air in one sample of a well-developed algal mat was saturated at 309mol photons m–2s–1, but increased with increasing ambient CO2concentrations (350 and 1000mol mol–1CO2) in the measuring chamber. Net CO2assimilation was 0.8mol CO2m–2s–1at 100mol mol–1CO2, 5.9mol CO2m–2s–1at 350mol mol–1CO2and 9.8mol CO2m–2s–1at 1000mol mol–1CO2. Compensation irradiance decreased and apparent photon yield increased with ambient CO2concentration. Measurements under natural conditions resulted in a quick response of CO2exchange rates when light conditions changed. We recommend the measuring system for rapid estimations of benthic primary production and as a valuable field research tool in connection with certain ecophysiological aspects under changing environmental conditions.  相似文献   

16.
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A net CO2 assimilation rate - C a ambient partial pressure of CO2 - C i intercellular partial pressure of CO2 - Rubisco Ribulose-1,5-bisphosphate carboxylase - VPD vapor pressure difference between leaf and air  相似文献   

17.
Photosynthetic productivity (Ps) of the estuarine dinoflagellate Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., was measured with an open differential infra-red gas analysis system especially designed to measure CO2 uptake at a constant CO2 concentration. Ps was determined in six different fluorescent lamp spectral qualities (SQ) (daylight, blue, green, orange, orange-red and red) with bandwiths ranging from 50 to 75 nm and at photon flux densities (PFD) from 1.7 to 170 mol of quanta s–1 m–2 to characterize the spectral response of daylight SQ grown P. mariae-lebouriae cultures. Ps was significantly higher for blue irradiation than for any other SQ. Compared to blue (100%) the following mean values were found: daylight 88%, green 79%, orange 29%, orange-red 56%, and red 87%. Differences were greatest at low PFD. Most measurements were performed at 20°C, but Ps was found to vary as a direct function of the culture temperature. A 10°C increase in temperature caused a 50% increase in Ps from 10° to 30°C with saturating PFD. Since the analytical system measured very small CO2 differentials, down to 0.5 l l–1, we were able to detect small and fast CO2 transients at the beginning and end of an irradiation. These transients, known as CO2-burst and CO2-gulp, increased in magnitude with increased PFD.  相似文献   

18.
Leaf photosynthetic rates were measured on field-grown soybeans during the 1980 season. Comparisons were made between different cultivars and isolines representative of maturity groups I–IV. Mature, fully expanded leaves at different nodes on the plant were measured in high light to determine which had the highest potential photosynthetic rates at any one time. Successive leaves during the growing season had maximum rates which increased from about 22 mol CO2 m-2 s-1 on 25 June to a peak of 30–44 mol CO2 m-2 s-1 in early August.The persistency and eventual decline in the maximum rate was associated with the maturity group and related dates of flowering, pod fill and onset of senescence. Early maturing cultivars (groups I and II) had higher peak rates (38–44 mol CO2 m-2 s-1) than later maturing cultivars (30–35 mol CO2 m-2 s-1, groups III and IV). However, the photosynthetic rates of early maturing cultivars declined rapidly after attaining their peak, whereas the leaves of later maturing cultivars maintained their photosynthetic activity for much longer.  相似文献   

19.
Wheat plants were grown from sowing to day 18 in 26-dm3 chambers at three different CO2 concentrations: 150 (-CO2), 350 (C, control), 800 (+CO2) mol mol-1. Afterwards, plants of the three variants were grown at the same natural CO2 concentration. Plant characteristics were measured just before the transfer (0 days after CO2 treatment, DAT), and at 5 – 8 DAT on the 1st leaf, and at 12 – 22 DAT on the 4th leaf. Decreased or increased CO2 concentrations caused acclimations which persisted after transplantation to natural CO2 concentration. At 5 – 8 DAT, stomatal density, stomatal conductance (gs), CO2 saturated net photosynthetic rate (PNsat0), radiation saturated net photosynthetic rate (PNsat1), and carboxylation efficiency () were higher in -CO2 plants and lower in +CO2 plants than in C plants. As compared with C plants, the photochemical efficiency () was lower in -CO2 and higher in -CO2 plants, however, chlorophyll (Chl) a, Chl b, Chl a–b and carotenoid contents were lower in both -CO2 and +CO2 plants. On the 4th leaf, which emerged on plant after finishing CO2 treatments, at 12 – 22 DAT, no differences in stomatal density and g, between treatments were observed. In -CO2 plants, pigment content and PNsat0 were higher, was lower, and PNsat1 and were not different from C plants. In contrast, in +CO2 plants, pigment content, PNsat1 and were lower, and PNsat0 and were unchanged. Leaf area, dry mass, and tiller development increased in +CO2 plants and decreased in -CO2 plants. In the interval between 8 and 22 DAT, lower net assimilation rate in +CO2 than in -CO2 plants was observed.  相似文献   

20.
Effects of environmental conditions on isoprene emission from live oak   总被引:12,自引:0,他引:12  
Live-oak plants (Quercus virginiana Mill.) were subjected to various levels of CO2, water stress or photosynthetic photon flux density to test the hypothesis that isoprene biosynthesis occurred only under conditions of restricted CO2 availability. Isoprene emission increases as the ambient CO2 concentration decreased, independent of the amount of time that plants had photosynthesized at ambient CO2 levels. When plants were water-stressed over a 4-d period photosynthesis and leaf conductance decreased 98 and 94%, respectively, while isoprene emissions remained constant. Significant isoprene emissions occurred when plants were saturated with CO2, i.e., below the light compensation level for net photosynthesis (100 mol m-2 s-1). Isoprene emission rates increased with photosynthetic photon flux density and at 25 and 50 mol m-2 s-1 were 7 and 18 times greater than emissions in the dark. These data indicate that isoprene is a normal plant metabolite and not — as has been suggested — formed exclusively in response to restricted CO2 or various stresses.Abbreviation PPFD photosynthetic photon flux density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号