首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The assembly origin (AO) region of the tobacco mosaic virus RNA melts in an usually narrow (2.5 degrees C) temperature range. In an 0.01 M phosphate buffer the melting temperature of AO was found to be 41.5 degrees C. This value corresponds to the regions with the most stable secondary/tertiary structure of the whole TMV RNA molecule. It is assumed that the AO region has a specific tertiary structure, which is maintained by the long-range interactions as well as by interactions of the pseudoknot type.  相似文献   

2.
Abstract

We have synthesized two RNA fragments: a 42-mer corresponding to the full loop I sequence of the loop I region of ColE1 antisense RNA (RNA I), plus three additional Gs at the 5′-end, and a 31-mer which has 11 5′-end nucleotides (G(-2)-U9) deleted. The secondary structure of the 42-mer, deduced from one- and two-dimensional NMR spectra, consists of a stem of 11 base-pairs which contains a U-U base-pair and a bulged C base, a 7 nucleotide loop, and a single-stranded 5′ end of 12 nucleotides. The UV-melting study of the 42-mer further revealed a multi-step melting behavior with transition temperatures 32°C and 71°C clearly discernible. In conjunction with NMR melting study the major transition at 71°C is assigned to the overall melting of the stem region and the 32°C transition is assigned to the opening of the loop region. The deduced secondary structure agrees with that proposed for the intact RNA I and provides structural bases for understanding the specificity of RNase E.  相似文献   

3.
All deviations from optimum cultivation temperature affect strongly the physiology and morphology of cells ofCandida boidinii strain 2 during growth in methanol-limited chemostat. The optimum cultivation temperature was 28–30 °C at which maximum cell concentration and maximum cell yield (Y S 0.4 g/g) were achieved. At suboptimal growth temperatures the cells were rich in cell protein, RNA, alcohol oxidase (AO) and in peroxisomes. Formation of cubic peroxisomes and a 20 % decrease of budding cells in the population was observed. At supraoptimal growth temperatures (>30 °C) a sharp decrease in AO activity was accompanied by degradation of peroxisomes in the cells. The culture forms pseudomycelium: at 34 °C the cells stop growing and they are washed out of the bioreactor.  相似文献   

4.
5.
L H Chang  A G Marshall 《Biopolymers》1986,25(7):1299-1313
The unfolding of B. subtilis 5S RNA is examined by direct calorimetric measurement in the presence of various concentrations of Na+ and Mg2+. The composite differential scanning calorimetry (DSC) curve is analyzed into 3–5 individual two-state melting transitions. In the absence of added Na+ or Mg2+, the 5S RNA segments melt together at Tm = 40°C. Addition of Na+ stabilizes the molecular structure (Tm = 56°C) and widens the melting temperature range, so that up to five component transitions are observed. Addition of Mg2+ alone produces a very stable structure (Tm = 75°C) with highly cooperative melting. Finally, addition of both Na+ and Mg2+ produces the highest stability (Tm = 76°C). The results are interpreted according to hypothetical secondary and tertiary base-pairing schemes. The conformational changes demonstrated here may facilitate the movement of the protein synthesis machinery during RNA translation.  相似文献   

6.
《Cytotherapy》2023,25(5):502-509
Background aimsAs evidenced by ongoing clinical trials and increased activity in the commercial sector, extracellular vesicle (EV)-based therapies have begun the transition from bench to bedside. As this progression continues, one critical aspect of EV clinical translation is understanding the effects of storage and transport conditions. Several studies have assessed the impact of storage on EV characteristics such as morphology, uptake and component content, but effects of storage duration and temperature on EV functional bioactivity and, especially, loaded cargo are rarely reported.MethodsThe authors assessed EV outcomes following storage at different temperatures (room temperature, 4°C, –20°C, –80°C) for various durations as well as after lyophilization.ResultsMesenchymal stromal cell (MSC) EVs were observed to retain key aspects of their bioactivity (pro-vascularization, anti-inflammation) for up to 4–6 weeks at –20°C and –80°C and after lyophilization. Furthermore, via in vitro assays and an in vivo wound healing model, these same storage conditions were also demonstrated to enable preservation of the functionality of loaded microRNA and long non-coding RNA cargo in MSC EVs.ConclusionsThese findings extend the current understanding of how EV therapeutic potential is impacted by storage conditions and may inform best practices for handling and storing MSC EVs for both basic research and translational purposes.  相似文献   

7.
Laser-Raman spectra of the bacteriophage MS2, and of its isolated coat-protein and RNA components, have been obtained as a function of temperature in both H2O and D2O (deuterium oxide) solutions. The prominent Raman lines in the spectra are assigned to the amino acid residues and polypeptide backbone of the viral coat protein and to the nucleotide residues and ribosyl-phosphate backbone of the viral RNA. The Raman frequencies and intensities, and their temperature dependence, indicate the following features of MS2 structure and stability. Coat-protein molecules in the native phage maintain a conformation determined largely by regions of β-sheet (~60%) and random-chain (~40%) structures. There are no disulfide bridges in the virion and all sulfhydryl groups are accessible to solvent molecules. Protein-protein interactions in the virion are stable up to 50 °C. Release of viral RNA from the virion does not affect either the conformation of the coat-protein molecules or the thermal stability of the capsid. MS2 RNA within the virion contains a highly ordered secondary structure in which most (~85%) of the bases are either paired or stacked or both paired and stacked and in which the RNA backbone assumes a geometry of the A-type. When RNA is partially or fully released from the virion its overall secondary structure at 32 °C is unchanged. However, the exposed RNA is more susceptible to changes in secondary structure promoted by increasing the temperature. Thus the viral capsid exerts a significant stabilizing effect on the secondary structure of MS2 RNA. This stabilization is ionic-strength dependent, being more pronounced in solutions containing high concentrations of KCl. Raman intensity profiles as a function of temperature reveal that disordering of the MS2 RNA backbone and rupture of hydrogen-bonding between complementary bases are gradual processes, the major portions of which occur above 40 °C. However, the unstacking of purine and pyrimidine bases is a more co-operative phenomenon occurring almost exclusively above 55 °C.  相似文献   

8.
Lactoferrin (Lf) is an iron-binding glycoprotein present in secretory fluids from human and bovine sources. Sequence alignment was employed to identify a region on the C-lobe of Lf capable of binding to bacterial cell surfaces, followed by all-atom explicit solvent molecular dynamics simulations to study the conformational changes of Lf after exposure to three processing temperatures: pasteurisation (72°C), spray drying (90°C) and ultra-high temperature (UHT) (127°C). Below 90°C, the simulations indicate relatively minor changes in overall protein structure. At UHT conditions (127°C), however, marked disruptions to protein structure were found as demonstrated by a substantial decrease in protein dimensions due to collapse in the inter-lobe region. There was also a marked increase in residue fluctuations in several regions of known functional importance, including antibacterial, iron-binding, and putative membrane binding regions, the latter of which is stabilised by a triplet of hydrophobic residues comprised of Leu446, Trp448 and Leu451 at low temperature, but which are disrupted under UHT conditions. A unique network analysis confirmed these results as demonstrated by large clusters of residues with increased dynamical correlation in the N-terminal lobe.  相似文献   

9.
Abstract

A pentamer RNA sequence, Gs2UUUC, and a s2U containing 14-mer RNA tetraloop hairpin were synthesized and characterized by NMR and by UV melting studies. These oligonucleotides were used as models to understand the effect of 2-thiouridine substitution on RNA structure and the potential for stabilization of tRNA codon-anticodon interactions through sU-34 modification. The magnitude of the effect of sU in our model system is comparable to the 20° C stabilization reported for 2-thiolation in a codonanticodon model system composed of two tRNAs with complementary anticodon sequences.  相似文献   

10.
Qingting Meng 《Molecular simulation》2017,43(13-16):1338-1347
Abstract

The topotactic transformation mechanism and memory effect of NiAl- and MgFe- layered double hydroxides (LDHs) are investigated by density functional theory (DFT)-based molecular simulation under their two key thermal decomposition temperatures (365, 800 °C for NiAl-LDHs, and 380, 800 °C for MgFe-LDHs). The results show that at the first temperature, the interlayer carbonate in both LDHs decompose to CO2 and H2O via a monodentate intermediate. During the dehydroxylation of the layers, for both LDHs the metal cations maintain their original distribution within the LDH (0?0?1) facet, while migrating substantially along the c-axis direction, and the layered structure of MgFe-LDHs is destroyed earlier than those of NiAl-LDH. Meanwhile, MgFe-LDHs can keep the memory effect longer than NiAl-LDHs, and the memory effect will disappear when the four-coordinated metal cations increased. At 800 °C, the layered structure of NiAl-LDHs is slightly destroyed, while a complete collapse of layered structure occurs in MgFe-LDHs. These results agree well with the experimental findings. This work will be helpful for the design and preparation of nanocatalysts derived from LDHs precursors.  相似文献   

11.
12.
The spatial organization of phage MS2 RNA by binding to ethidium bromide (EtBr) and acridine orange (AO) to RNA was studied. The analyses of dye interaction by spectrophotometric and fluorometric methods have demonstrated that only about a half of 65-70% nucleotides of double-stranded segments can interact with AO and EtBr. On the other hand all the single-stranded segments appear to be accessible to AO binding. These interactions did not practically change when ionic strength (0.01-0.3), Mg2+ and Zn2+ concentrations (10(-3) M) or pH (4.7-7.4) varied. The data permit to suppose that phage MS2 RNA has a very stable tertiary structure which makes part of double-stranded segments unaccessible to inter calating dyes. Taking these and other facts into consideration we suppose that double-stranded segments play an important role in stabilization of the RNA tertiary structure. One of the most possible structure is a compact "rod-like" intramolecular aggregate of double-stranded hairpin-like segments of RNA with parallel orientation.  相似文献   

13.
BackgroundWith dry eye, the ratio of cholesteryl ester (CE) to wax ester (WE) decreases substantially in meibum, but the functional and structural consequences of this change are speculative. The aim of this study is to confirm this finding and to bridge this gap in knowledge by investigating the effect of varying CE/WE ratios on lipid structure and thermodynamics.MethodsInfrared spectroscopy was use to quantify CE and WE in human meibum and to measure hydrocarbon chain conformation and thermodynamics in a cholesteryl behenate, stearyl stearate model system.ResultsThe CE/WE molar ratio was 36% lower for meibum from donors with dry eye due to meibomian gland dysfunction compared with meibum from donors without dry eye. CE (5 mol %) dramatically increased the phase transition temperature of pure WE from -0.12 °C to 63 °C in the mixture. Above 5 mol % CB, the phase transition temperature increased linearly, from 68.5 °C to 85 °C. In the ordered state, CE caused an increase in lipid order from about 72% trans rotamers to about 86% trans rotamers. Above 10% CE, the hydrocarbon chains were arranged in a monoclinic geometry.ConclusionsThe CE/WE is lower in meibum from donors with dry eye due to meibomian-gland dysfunction. Major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above.General significanceCE-WE interactions may be important for in understanding lipid layer structure and functional relationships on the surface of tears, skin and plants.  相似文献   

14.
The stability of sonicated rat liver chromatin in sodium phosphate buffer, pH 6.8 was studied as a function of buffer concentration (0.012 to 0.16 m) and temperature (20 to 98 °C). It was found that as the temperature was increased a stepwise precipitation of chromatin took place which was revealed by the presence of three plateaux (20 to 50 °C, 70 to 75 °C and above 90 °C) and two transitional zones (55 to 70 °C and 75 to 90 °C) on the A320 curves and on the percentage precipitated nucleoprotein versus temperature curves as well.This permitted the fractionation of chromatin in 0.08 m-phosphate buffer into three fractions by a stepwise heating at 50 °C (50 °C-pellet) and 98 °C (50–98 °C-pellet and post 98 °C-supernatant). DNA isolated from these fractions was characterized in respect to sedimentation velocity and hybridization with heterogeneous nuclear RNA. The hybridization studies showed a different ability of these three DNA preparations in binding nuclear heterogeneous RNA: 16%, 8% and 30% for DNA isolated from 50 °C-pellet, 50–98 °C-pellet and post 98 °C-supernatant, respectively. The results are discussed in terms of chromatin structure and function.  相似文献   

15.
Long-range tertiary interactions determine the three-dimensional structure of a number of metabolite-binding riboswitch RNA elements and were found to be important for their regulatory function. For the guanine-sensing riboswitch of the Bacillus subtilis xpt-pbuX operon, our previous NMR-spectroscopic studies indicated pre-formation of long-range tertiary contacts in the ligand-free state of its aptamer domain. Loss of the structural pre-organization in a mutant of this RNA (G37A/C61U) resulted in the requirement of Mg2+ for ligand binding. Here, we investigate structural and stability aspects of the wild-type aptamer domain (Gsw) and the G37A/C61U-mutant (Gswloop) of the guanine-sensing riboswitch and their Mg2+-induced folding characteristics to dissect the role of long-range tertiary interactions, the link between pre-formation of structural elements and ligand-binding properties and the functional stability. Destabilization of the long-range interactions as a result of the introduced mutations for Gswloop or the increase in temperature for both Gsw and Gswloop involves pronounced alterations of the conformational ensemble characteristics of the ligand-free state of the riboswitch. The increased flexibility of the conformational ensemble can, however, be compensated by Mg2+. We propose that reduction of conformational dynamics in remote regions of the riboswitch aptamer domain is the minimal pre-requisite to pre-organize the core region for specific ligand binding.  相似文献   

16.
The freezing-point-depressing protein from the winter flounder, Pseudopleuronectes americanus has been shown from circular dichroism measurements to possess a large proportion (~85%) of the α-helical conformation in aqueous solution (pH 8.0) at ?1°C. The helical content decreases as the temperature is raised. Viscosity data at ?1°C indicate an asymmetric shape for the protein molecule compatible with its high helical content. Thus, the secondary and tertiary structure of this freezing-point-depressing protein as well as its primary structure (reported elsewhere), are found to be different from its counterpart glycoproteins isolated from the Antarctic fish.  相似文献   

17.
When paramecia grown at 24°C are transferred rapidly to 32°C, DNA and protein synthesis continue uninterrupted but at higher rates. Electron microscopic observations indicate that more of the macronuclear chromatin is transcribed at the elevated temperature. This interpretation is supported by hybridization experiments which show that the percentage of the macronuclear genome transcribed into poly(A)+ RNA is 24°C and 35% at 32°C. Kinetic analysis of cDNA-poly(A)+ RNA hybridizations reveals three abundance classes of poly(A)+ RNA and indicates that the number of genes expressing low abundance sequences is about 9000 at 24°C and 13000 at 32°C. The intermediately abundant and highly abundant classes are represented by 100–200 and 1–3 different kinds of RNA sequence, respectively. Cross hybridization shows that changes occur throughout the distribution of abundance classes of poly(A)+ RNA with increase in temperature.  相似文献   

18.
Abstract

We have investigated the minor groove binders netropsin (Nt) and related lexitropsins for possible interactions with parallel-stranded DNA (ps-DNA). The fluorescence emission spectra and their temperature dependence between 4°C and 30°C led to two conclusions: (i) The specific ligand Nt induces a conversion of the ps-DNA to an antiparallel-stranded DNA (aps-DNA) with mismatched base pairs, a reaction which is much less pronounced for the imidazole-containing analogs, (ii) The more weakly binding imidazole-bearing netropsin-analogs may bind to ps-DNA.  相似文献   

19.
The kinetics of the melting transitions of tRNAphe (yeast) were followed by the fluorescence of the Y-base and of formycin substituted for the 3'-terminal adenine. As judged from differential UV absorbance melting cutves the formycin label had virtually no influence on the conformation of the tRNA. A temperature jump apparatus was modified to allow the simultaneous observation of transmission and fluorescence intensities by two independent optical channels. The design of a temperature jump cell with an all quartz center piece is given. The cell is resistant to temperatures up to 90°C; it provides high optical sensitivity, low stray light intensity and the possibility of measuring fluorescence polarization. The T-jump experiments allowed to discriminate between fast unspecific fluorescence quenching (τ <5 μsec) and slow co-operative conformational changes. In the central part of the temperature range of UV-melung (midpoint temperature 30°C in 0.01 M Na+ and 39°C in 0.03 M Na+, pH 6.8) two resolvable relaxation processes were observed. The coirssponding relaxation times were 20 msec and 800 msec at 30°C in 0.01 M Na+, and 4 msec and 120 msec at 39°C in 0.03 M Na+. The Y-base fluorescence shows both of the relaxation effects, which almost cancel in equilibrium fluorescence melting, because their amplitudes have opposite signs. From this finding the existence of some residual tertiary structure is inferred which persists after the unfolding of the main part of tertiary structure durirg early melting (midpoint temperature 24°C in 0.03 M Na+). In the fluorescence sigXXX of the formycin also the two relaxation effects appear. Both of them are connected with a decrease of the fluorescence intensity. From the results a coupled opening of the anticodon and acceptor branches is concluded.Enzymes: phenylalanyl-tRNA synthetase, PRS (EC 6.1.1.-20); ATP (CTP) tRNA nucleotidyl transferase, NT (EC 2.7.7.-20); alkaline phosphatase (EC 3-1-3.1).  相似文献   

20.
Commercial whey protein hydrolysates containing bovine β-lactoglobulin (β-Lg) may have residual allergenicity due to the inaccessibility of some sequential epitopes to proteases. Microwave may enhance unfolding pathways in protein structure due to its non-thermal effects. This research compared the effects of microwave heating (MW) and conventional heating (CH) on the unfolding in the secondary and tertiary structures of β-Lg over a temperature range of 40-90 °C using circular dichroism (CD), fluorescence spectroscopy, and two dimensional (2D) 1H nuclear magnetic resonance (NMR) spectroscopy. Above 50 °C, β-sheet and α-helical secondary structures decreased during MW and CH, with a higher decrease being observed during MW. The near-UV spectra of MW β-Lg showed lower intensity suggesting higher tertiary structure loss than in CH β-Lg at all temperatures. The fluorescence spectra of MW β-Lg showed increased exposure of tryptophan residues to solvent as compared to CH β-Lg and suggested greater unfolding in tertiary structure in MW β-Lg at 60 °C than in CH β-Lg at 70 °C. 2D 1H NMR spectra confirmed more extensive H-D exchange in MW β-Lg explained by the exposure of β-sheets (C, G, and H) at 50 °C under microwave treatment, which are thermally resistant to H-D exchange up to 75 °C during conventional heating. These results revealed a substantial enhancing effect of microwave treatment on the thermal unfolding and exposure of buried amide groups in β-Lg compared to conventional heating. Microwave processing could be a promising alternative to produce hydrolysates with lower allergenicity and improved bioactivity through structure modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号