首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken β-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the ‘601’ nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp—an accuracy exceeding that of earlier predictions.

Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning ‘rules’ they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL ±3.5 and ±5.5, which is similar to the α-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the ‘601’ clone) the same YR/YYRR motifs occur predominantly at the sites SHL ±1.5. The interaction between the H3/H4 tetramer and the central part of the nucleosomal DNA is likely to be responsible for the positioning of nucleosomes of this group, and the DNA trajectory in these nucleosomes may differ in detail from the published structures.

Thus, from the stereochemical perspective, the in vitro nucleosomes studied here follow either an X-ray-like pattern (with strong deformations in the terminal parts of nucleosomal DNA), or an alternative pattern (with the deformations occurring predominantly in the central part of the nucleosomal DNA). The results presented here may be useful for genome-wide classification of nucleosomes, linking together structural and thermodynamic characteristics of nucleosomes with the underlying DNA sequence patterns guiding their positions.  相似文献   

2.
Abstract

Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends (“mini-kinks”) which are directed into the major and minor grooves alternatively and separated by 5–6 base pairs. The “mini-kink” model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two “annealed kinks”, also directed into the grooves.

The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrmidine blocks 5–6 base pairs long should manifest a spectacular curvature in solution.

Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent “mechanical” properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

3.
Abstract

By measuring prevailing distances between YY, YR, RR, and RY dinucleotides in the large database of the nucleosome DNA fragments from C. elegans, the consensus sequence structure of the nucleosome DNA repeat of C. elegans was reconstructed: (YYYYYRRRRR)n. An actual period was estimated to be 10.4 bases. The pattern is fully consistent with the nucleosome DNA patterns of other eukaryotes, as established earlier, and, thus, the YYYYYRRRRR repeat can be considered as consensus nucleosome DNA sequence repeat across eukaryotic species. Similar distance analysis for [A, T] dinucleotides suggested the related pattern (TTTYTARAAA)n where the TT and AA dinucleotides display rather out of phase behavior, contrary to the “AA or TT” in-phase periodicity, considered in some publications. A weak 5-base periodicity in the distribution of TA dinucleotides was detected.  相似文献   

4.
Abstract

Bending flexibility of the six tetrameric duplexes was investigated d(AAAA):d(TTTT), d(AATT)2, d(TTAA) 2, d(GGGG):d(CCCC), d(GGCC) 2 and d(CCGG) 2. The tetramers were extended in the both directions by regular double helices. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less than that in the perpendicular direction by an order of magnitude. Such an anisotropy is a property of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5–7°, are in agreement with experimental value of the DNA persistence length.

Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove. Moreover, they have an equilibrium bend of 6–12° into this groove. The above inequality is caused by stacking interaction of the bases.

The bend in the central dimer is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is inessential, so that DNA remains within the B-family of forms: namely, when the helical axis is bent by 20°, the backbone dihedral angles vary by no more than 15°.

The obtained results are in accord with x-ray structure of the B-DNA dodecamer; they further substantiate our early model of DNA wrapping in the nucleosome by means of “mini-kinks” separated by a half-pitch of the double helix, i.e. by 5–6 b.p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimentional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in equilibrium structure of certain DNA fragments.  相似文献   

5.
Several periodic motifs have been implicated in facilitating the bending of DNA around the histone core of the nucleosome. For example, di-nucleotides AA/TT/TA and GC at ∼10-bp periods, but offset by 5 bp, are found with higher-than-expected occurrences in aligned nucleosomal DNAs in vitro and in vivo. Additionally, regularly oscillating period-10 trinucleotide motifs non-T, A/T, G and their complements have been implicated in the formation of regular nucleosome arrays. The effects of these periodic motifs on nucleosome formation have not been systematically tested directly by competitive reconstitution assays. We show that, in general, none of these period-10 motifs, except TA, in certain sequence contexts, facilitates nucleosome formation. The influence of periodic TAs on nucleosome formation is appreciable; with some of the 200-bp DNAs out-competing bulk nucleosomal DNA by more than 400-fold. Only the nucleotides immediately flanking TA influence its nucleosome-forming ability. Period-10 TA, when flanked by a pair of permissive nucleotides, facilitates DNA bending through compression of the minor groove. The free energy change for nucleosome formation decreases linearly with the number of consecutive TAs, up to eight. We suggest how these data can be reconciled with previous findings.  相似文献   

6.
Sequence-dependent bending of DNA and phasing of nucleosomes   总被引:5,自引:0,他引:5  
Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends ("mini-kinks") which are directed into the major and minor grooves alternatively and separated by 5-6 base pairs. The "mini-kink" model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two "annealed kinks", also directed into the grooves. The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrimidine blocks 5-6 base pairs long should manifest a spectacular curvature in solution. Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent "mechanical" properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

7.
How eukaryotic genomes encode the folding of DNA into nucleosomes and how this intrinsic organization of chromatin guides biological function are questions of wide interest. The physical basis of nucleosome positioning lies in the sequence-dependent propensity of DNA to adopt the tightly bent configuration imposed by the binding of the histone proteins. Traditionally, only DNA bending and twisting deformations are considered, while the effects of the lateral displacements of adjacent base pairs are neglected. We demonstrate, however, that these displacements have a much more important structural role than ever imagined. Specifically, the lateral Slide deformations observed at sites of local anisotropic bending of DNA define its superhelical trajectory in chromatin. Furthermore, the computed cost of deforming DNA on the nucleosome is sequence-specific: in optimally positioned sequences the most easily deformed base-pair steps (CA:TG and TA) occur at sites of large positive Slide and negative Roll (where the DNA bends into the minor groove). These conclusions rest upon a treatment of DNA that goes beyond the conventional ribbon model, incorporating all essential degrees of freedom of "real" duplexes in the estimation of DNA deformation energies. Indeed, only after lateral Slide displacements are considered are we able to account for the sequence-specific folding of DNA found in nucleosome structures. The close correspondence between the predicted and observed nucleosome locations demonstrates the potential advantage of our "structural" approach in the computer mapping of nucleosome positioning.  相似文献   

8.
The bending flexibility of six tetramers was studied in an assumption that they were extended in the both directions by regular double helices. The bends of B-DNA in different directions were considered. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less pronounced than in the perpendicular direction by the order of magnitude. Such an anisotropy is a feature of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degrees, are in agreement with the experimental value of DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove, moreover, they have an equilibrium bend of 6-12 degrees into this groove. The above inequality is caused by the stacking interaction of the bases. The bend in the central dimers is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is unessential, so that DNA remains within the limits of the B-family of forms: namely, when the helical axis is bent by 20 degrees the backbone dihedral angles vary by no more than 15 degrees. The obtained results are in accord with the X-ray structure of B-DNA dodecamer; they further substantiate our earlier model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b. p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in the equilibrium structure of certain DNA fragments. To the four "Calladine rules" two more can be added: the minor-groove steric clash of purines in the YR sequences are avoided by: (1) bending of the helix into the major groove; (2) increasing the distance between the base pairs (stretching the double helix).  相似文献   

9.
Abstract

Bending in double-helical B-DNA apparently occurs only by rolling adjacent base pairs over one another along their long axes. The lifting apart of ends that would be required by tilt or wedge angle contributions is too costly in free energy and does not occur. Roll angles at base steps can be positive (compression of major groove) or negative (compression of minor groove); with the former somewhat easier.

Individual steps may advance or oppose the overall direction of bend, or make lateral excursions, but the result of this series of “random roll” steps is the production of a net bending in the helix axis. Because the natural roll points for bending in a given plane occur every 5 base pairs, one would expect that double-helical DNA wrapped around a nucleosome core would exhibit bends with the same periodicity. Alternate bends might be particularly acute where the major groove faced the nucleosome core and was compressed against it.

The “annealed kinking” model proposed by Fratini et al. (J. Biol. Chem. 257, 14686 (1982) was suggested from the observation that a major bend at a natural roll point is flanked by decreasing roll angles at the steps to either side, as though local strain was being minimized by somewhat blurring the bend out rather than keeping it localized. The random walk model suggested in this paper would describe this as a decreased roll angle as the helix step rotates toward a direction perpendicular to the overall bend. Bending of DNA is seen to be a more stochastic process than had been suspected. Detailed analysis of every helix step reveals both side excursions and backward or retrograde motion, as in any random walk situation. Yet these isolated steps counteract one another, to leave behind a residuum of overall bending in a specific direction.  相似文献   

10.
Sequence-dependent anisotropic flexibility of B-DNA. A conformational study   总被引:7,自引:0,他引:7  
Bending flexibility of the six tetrameric duplexes was investigated d(AAAA):d(TTTT), d(AATT)2, d(TTAA)2, d(GGGG):d(CCCC), d(GGCC)2 and d(CCGG)2,. The tetramers were extended in the both directions by regular double helices. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less than that in the perpendicular direction by an order of magnitude. Such an anisotropy is a property of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degree, are in agreement with experimental value of the DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove. Moreover, they have an equilibrium bend of 6-12 degree into this groove. The above inequality is caused by stacking interaction of the bases. The bend in the central dimer is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is inessential, so that DNA remains within the B-family of forms: namely, when the helical axis is bent by 20 degree. the backbone dihedral angles vary by no more than 15 degree. The obtained results are in accord with x-ray structure of the B-DNA dodecamer; they further substantiate our early model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b.p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in equilibrium structure of certain DNA fragments.  相似文献   

11.
Calf thymus nucleosomes containing H1 were treated with dichlorodiammineplatinum (DDP) at low binding ratios (r = 0.05–0.15). Change in the electrophoretic mobility of the extracted nucleosomal DNA was observed following treatment with cis-DDP and little change with trans-DDP. There was a decrease in the electrophoretic mobility of the nucleosomal DNA as well as obliteration of the nucleosomal repeat distance. The fluorescence intensity of terbium binding to the extracted DNA showed minimal change following drug treatment. However, the thermal melting behavior of the nucleosomal DNA was altered to a greater extent following cis-DDP treatment at 280 rather than 260 nm and a destabilization of the DNA helix was observed. These data suggest that in the whole nucleosome, cis-DDP produces greater structural effects on the packaged DNA than trans-DDP, although similar amounts of drug are bound with both isomers.  相似文献   

12.
Abstract

The computational prediction of nucleosome positioning from DNA sequence now allows for in silico investigation of the molecular evolution of biophysical properties of the DNA molecule responsible for primary chromatin organization in the genome. To discern what signal components driving nucleosome positioning in the yeast genome are potentially targeted by natural selection, we compare the performance of various models predictive of nucleosome positioning within the context of a simple statistical test, the repositioned mutation test. We demonstrate that while nucleosome occupancy is driven largely by translational exclusion in response to AT content, there is also a strong signature of evolutionary conservation of regular patterns within nucleosomal DNA sequence related to the structural organization of the nucleosome core (e.g., 10-bp dinucleotide periodicity). We also use computer simulations to investigate hypothetical coding and regulatory constraints on the ability of sequence properties affecting nucleosome formation to adaptively evolve. Our results demonstrate that natural selection may act independently on different DNA sequence properties responsible for local chromatin organization. Furthermore, at least with respect to the deformation energy of the DNA molecule in the nucleosome, the presence of the genetic code has greatly restricted the ability of sequences to evolve the dynamic nucleosome organization typically observed in promoter regions.  相似文献   

13.
Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.  相似文献   

14.
Abstract

All atom molecular dynamics simulations (10ns) of a nucleosome and of its 146 basepairs of DNA free in solution have been conducted. DNA helical parameters (Roll, Tilt, Twist, Shift, Slide, Rise) were extracted from each trajectory to compare the conformation, effective force constants, persistence length measures, and fluctuations of nucleosomal DNA to free DNA. The conformation of DNA in the nucleosome, as determined by helical parameters, is found to be largely within the range of thermally accessible values obtained for free DNA. DNA is found to be less flexible on the nucleosome than when free in solution, however such measures are length scale dependent. A method for disassembling and reconstructing the conformation and dynamics of the nucleosome using Fourier analysis is presented. Long length variations in the conformation of nucleosomal DNA are identified other than those associated with helix repeat. These variations are required to create a proposed tetrasome conformation or to qualitatively reconstruct the 1.75 turns of the nucleosome's superhelix. Reconstruction of free DNA using selected long wavelength variations in conformation can produce either a left-handed or a right-handed superhelix. The long wavelength variations suggest 146 basepairs is a natural length of DNA to wrap around the histone core.  相似文献   

15.
Winding DNA in a superhelix can be considered a process consisting of two smooth deformations: bending and twisting. The extra twist angle introduced by winding DNA into the nucleosomal superhelix is calculated by means of the Crick formula to be −0.5° per base pair (bp). This is equivalent to a change of −0.15±0.015 bp in the DNA double-helical repeat. Free DNA in solution is known to have a helical repeat of 10.55±0.1 bp. On the other hand, a weighted average of various estimates of the DNA repeat in the nucleosome is 10.38±0.02. The difference happens to be perfectly accounted for by the superhelicity of the nucleosomal DNA. This implies that the latter is essentially nonconstrained.  相似文献   

16.
17.
18.
Introduction of a T-A or pyrimidine-purine step into a straight and rigid A-tract can cause a positive roll deformation that kinks the DNA helix at that step. In CCTTTAAAGG, the central T-A step has an 8.6 degrees bend toward the major groove. We report the structural analysis of CCTTTAAAGG and a comparison with 25 other representative crystal structures from the NDB containing at least four consecutive A or T bases. On average, more local bending occurs at the disruptive T-A step (8.21 degrees ) than at an A-T step (5.71 degrees ). In addition, A-tracts containing an A-T step are more bent than are pure A-tracts, and hence A-A and A-T steps are not equivalent. All T-A steps examined exhibit positive roll, bending towards the major groove, while A-T steps display negative roll and bend slightly towards the minor groove. This illustrates how inherent negative and positive roll are, respectively, at A-T and T-A steps within A-tracts. T-A steps are more deformable, showing larger and more variable deformations of minor groove width, rise, cup, twist, and buckle. Standard deviations of twist, rise, and cup for T-A steps are 6.66 degrees, 0.55 A, and 15.90 degrees, versus 2.28 degrees, 0.21 A, and 2.99 degrees for A-T steps. Packing constraints determine which local values of these helical parameters an individual T-A step will adopt. For instance, with CCTTTAAAGG and three isomorphous structures, CGATTAATCG, CGATATATCG, and CGATCGATCG, crystal packing forces lead to a series of correlated changes: widened minor groove, large slide, low twist, and large rise. The difference in helical parameters between A-T steps lying within A-tracts, versus A-T steps within alternating AT sequences, demonstrates the importance of neighboring steps on the conformation of a given dinucleotide step.  相似文献   

19.
Multiscale modeling of nucleosome dynamics   总被引:3,自引:1,他引:2       下载免费PDF全文
Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed “cold sites”, which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin structure, mediated by salt-bridge interactions with adjacent DNA.  相似文献   

20.
Abstract

An original signal extraction procedure is applied to database of 146 base nucleosome core DNA sequences from C. elegans (S. M. Johnson et al. Genome Research 16, 1505–1516, 2006). The positional preferences of various dinucleotides within the 10.4 base nucleosome DNA repeat are calculated, resulting in derivation of the nucleosome DNA bendability matrix of 16x10 elements. A simplified one-line presentation of the matrix (“consensus” repeat) is…A(TTTCCGGAAA)T…. All 6 chromosomes of C. elegans conform to the bendability pattern. The strongest affinity to their respective positions is displayed by dinucleotides AT and CG, separated within the repeat by 5 bases. The derived pattern makes a basis for sequence-directed mapping of nucleosome positions in the genome of C. elegans. As the first complete matrix of bendability available the pattern may serve for iterative calculations of the species-specific matrices of bendability applicable to other genomic sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号