首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain insight into the functional properties of Treponema denticola cystalysin, we have analyzed the pH- and ligand-induced spectral transitions, the pH dependence of the kinetic parameters, and the substrate specificity of the purified enzyme. The absorption spectrum of cystalysin has maxima at 418 and 320 nm. The 320 nm band increases at high pH, while the 418 nm band decreases; the apparent pK(spec) of this spectral transition is about 8.4. Cystalysin emitted fluorescence at 367 and 504 nm upon excitation at 320 and 418 nm, respectively. The pH profile for the 367 nm emission intensity increases above a single pK of approximately 8.4. On this basis, the 418 and 320 nm absorbances have been attributed to the ketoenamine and substituted aldamine, respectively. The pH dependence of both log k(cat) and log k(cat)/K(m) for alpha,beta-elimination reaction indicates that a single ionizing group with a pK value of approximately 6.6 must be unprotonated to achieve maximum velocity. This implies that cystalysin is more catalytically competent in alkaline solution where a remarkable portion of its coenzyme exists as inactive aldamine structure. Binding of substrates or substrate analogues to the enzyme over the pH range 6-9.5 converts both the 418 and 320 nm bands into an absorbing band at 429 nm, assigned to the external aldimine in the ketoenamine form. All these data suggest that the equilibrium from the inactive aldamine form of the coenzyme shifts to the active ketoenamine form on substrate binding. In addition, reinvestigation of the substrate spectrum of alpha,beta-elimination indicates that cystalysin is a cyst(e)ine C-S lyase rather than a cysteine desulfhydrase as claimed previously.  相似文献   

2.
Tryptophanase is catalytically more competent in alkaline pH even though the coenzyme exists as an inactive aldamine structure in this pH region. The binding of a substrate analog, 3-indolepropionate to the enzyme shifts the equilibrium from the substituted aldamine to the ketoenamine form in the entire pH region studied. The resultant ketoenamine form is favorable for transaldimination with the substrate amino group, a prerequisite for subsequent catalysis. This implies that the binding of tryptophan in alkaline pH, where the enzyme shows maximum activity, converts the inactive aldamine form of the coenzyme to the active ketoenamine form, which is favorable for undergoing the next step of the catalytic process.  相似文献   

3.
Tyr 64, hydrogen-bonded to coenzyme phosphate in Treponema denticola cystalysin, was changed to alanine by site-directed mutagenesis. Spectroscopic and kinetic properties of the Tyr 64 mutant were investigated in an effort to explore the differences in coenzyme structure and kinetic mechanism relative to those of the wild-type enzyme. The wild type displays coenzyme absorbance bands at 418 and 320 nm, previously attributed to ketoenamine and substituted aldamine, respectively. The Tyr 64 mutant exhibits absorption maxima at 412 and 325 nm. However, the fluorescence characteristics of the latter band are consistent with its assignment to the enolimine form of the Schiff base. pK(spec) values of approximately 8.3 and approximately 6.5 were observed in a pH titration of the wild-type and mutant coenzyme absorbances, respectively. Thus, Tyr 64 is probably the residue involved in the nucleophilic attack on C4' of pyridoxal 5'-phosphate (PLP) in the internal aldimine. Although the Tyr 64 mutant exhibits a lower affinity for PLP and lower turnover numbers for alpha,beta-elimination and racemization than the wild type, the pH profiles for their Kd(PLP) and kinetic parameters are very similar. Rapid scanning stopped-flow and chemical quench experiments suggest that, in contrast to the wild type, for which the rate-determining step of alpha,beta-elimination of beta-chloro-L-alanine is the release of pyruvate, the rate-determining step for the mutant in the same reaction is the formation of alpha-aminoacrylate. Altogether, these results provide new insights into the catalytic mechanism of cystalysin and highlight the functional role of Tyr 64.  相似文献   

4.
ilvE gene of Escherichia coli was inserted into the region downstream of the tac promotor. As a result, the branched-chain amino acid aminotransferase was overproduced by about a hundred-fold in E. coli W3110. The overproduced aminotransferase was purified from cell extracts about 40-fold to homogeneity. Chemical and physicochemical analyses confirmed that it was a product of the ilvE gene. The enzyme existed in a hexamer with a subunit molecular weight of 34,000; the double trimer model of the enzyme presumed by the previous chemical cross-linking experiments (Lee-Peng, F.-C. et al. (1979) J. bacteriol. 139, 339-345) was supported by electron micrographs. The circular dichroic (CD) spectrum of branch-chain amino acid aminotransferase had double negative maxima at 210 and 220 nm. The alpha-helical content was estimated to be about 40% from the CD spectrum in the region of 200 to 250 nm. The absorption spectrum of the enzyme showed two peaks at 330 and 410 nm. There was no pH-dependent spectral shift. The CD spectrum of the coenzyme, pyridoxal 5'-phosphate, had negative peaks at 330 and 410 nm. These spectral properties of branched-chain amino acid aminotransferase were quite different from those of E. coli aspartate aminotransferase. Each subunit bound approximately 1 mol of pyridoxal 5'-phosphate. A lysyl residue, which forms a Schiff base with the aldehyde group of the pyridoxal 5'-phosphate, was identified in the primary structure of the enzyme.  相似文献   

5.
O-acetylserine sulfhydrylase, a homo-dimeric enzyme from Salmonella typhimurium, covalently binds one pyridoxal 5'-phosphate molecule per subunit as a fluorescent coenzyme. Different tautomers of the Schiff base between the coenzyme and lysine 41 generate structured absorption and fluorescence spectra upon one-photon excitation. We investigated the protein population heterogeneity by fluorescence correlation spectroscopy and lifetime techniques upon two-photon excitation. We sampled the fluorescence intensity from a small number of molecules (approximately 10) and analyzed the distribution of photon counts to separately determine the number and the fluorescence brightness of excited protein molecules. The changes in the average number of molecules and in the fluorescence brightness with the excitation wavelength indicate the presence of at least two fluorescent species, with two-photon excitation maxima at 660 and 800 nm. These species have been identified as the enolimine and ketoenamine tautomers of the protein-coenzyme internal aldimine. Their relative abundance is estimated to be 4:1, whereas the ratio of their two-photon cross sections is reversed with respect to the single-photon excitation case. Consistent results are obtained from the measurement of the lifetime decays, which are sensitive to the excited-state heterogeneity. At least two components were detected, with lifetimes of approximately 2.5 and 0.5 ns. The lifetimes are very close to the values measured in bulk solutions upon one-photon excitation and attributed to the ketoenamine tautomer and to a dipolar species formed upon proton dissociation in the excited state.  相似文献   

6.
Tryptophanase (tryptophan: indole-lyase) from Escherichia coli has been isolated in the holoenzyme form and its absorption spectra and acid-base chemistry have been reevaluated. Apoenzyme has been prepared by dialysis against sodium phosphate and L-alanine and molar absorptivities of the coenzyme bands have been estimated by readdition of pyridoxal 5'-phosphate. The spectrophotometric titration curve, whose midpoint is at pH 7.6 in 0.1 M potassium phosphate buffers, indicates some degree of cooperativity in dissociation of a pair of protons. Resolution of the computed spectra of individual ionic forms of the enzyme with lognormal distribution curves shows that band shapes are similar to those of model Schiff bases and of aspartate aminotransferase. Using molar areas from the latter we estimated amounts of individual tautomeric species. In addition to ketoenamine and enolimine or covalent adduct the high pH form also appears to contain approximately 18% of a species with a dipolar ionic ring (protonated on the ring nitrogen and with phenolate -O-). We suggest that this may be the catalytically active form of the coenzyme in tryptophanase. The equilibrium between tryptophanase and L-alanine has also been reevaluated.  相似文献   

7.
Conditions for reductive methylation of amine groups in proteins using formaldehyde and cyanoborohydride can be chosen to modify selectively the active site lysyl residue of aspartate aminotransferase among the 19 lysyl residues in each subunit of this protein. Apoenzyme must be treated, under mildly acidic conditions (pH = 6), at a relatively low molar ratio of formaldehyde to protein (40:1); and, upon reduction with sodium cyanoborohydride, 85% of the formaldehyde is incorporated at Lysine 258 and 15% at the amino-terminal alanyl residue. The modified protein, characterized after tryptic hydrolysis, separation of the peptides by high performance liquid chromatography procedures and subsequent amino acid analysis, shows that lysine 258 is preferentially modified as a dimethylated derivative. Modified apoenzyme can accept and tightly bind added coenzyme pyridoxal phosphate, as measured by circular dichroism procedures. The methylated enzyme is essentially catalytically inactive when measured by standard enzymatic assays. On the other hand, addition of the substrate, glutamate, produces the characteristic absorption spectral shifts for conversion of the active site-bound pyridoxal form of the coenzyme (absorbance at 400 nm) to its pyridoxamine form (absorbance at 330 nm). Such a half-transamination-like process occurs as in native enzyme, albeit at several orders of magnitude lower rate. This event takes place even though the characteristic internal holoenzyme Schiff's base between Lys-258 and aldehyde of bound pyridoxal phosphate does not exist in methylated, reconstituted holoenzyme. It is concluded that this chemically transformed enzyme can undergo a half-transamination reaction with conversion of active site-bound coenzyme from a pyridoxal to a pyridoxamine form, even when overall catalytic turnover transamination cannot be detected.  相似文献   

8.
5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.  相似文献   

9.
The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from the genomic DNA of photosynthetic bacterium Rhodopseudomonas palustris KUGB306. The deduced protein (ALAS) of this gene contained 409 amino acids. The hemA gene was subcloned into an expression vector pGEX-KG and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase (GST) in Escherichia coli BL21. The recombinant ALAS was purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose 4B resin and cleavage of the purified fusion protein by thrombin protease. The optimum pH and temperature of the recombinant ALAS was found to be at pH 7.5-8.0 and 35-40 degrees C, respectively. The Km value of the enzyme was 2.01 mM for glycine and 49.55 microM for succinyl-CoA. The enzyme activity was strongly inhibited by Pb2+, Fe2+, Co2+, Cu2+, and Zn2+ at 1 mM, but slightly affected by Mg2+ and K+. The recombinant ALAS required pyridoxal 5'-phosphate (PLP) as a cofactor for catalysis. Removal of this cofactor led to complete loss of the activity. Ultraviolet-visible spectroscopy with the ALAS suggested the presence of an aldimine linkage between the enzyme and PLP.  相似文献   

10.
Glutathione reductase (NAD(P)H:GSSG oxidoreductase EC 1.6.4.2.) was purified 1160-fold to homogeneity from the nonsulfurous purple bacteria Rhodospirillum rubrum (wild type). Specific activity of the pure preparation was 102 U/mg. The enzyme displayed a typical flavoprotein absorption spectrum with maxima at 274,365, and 459 nm and an absorbance ratio A280/A459 of 7.6. The amino acid analysis revealed an unusually high content of glycine and arginine residues. Titration of the enzyme with 5,5'-dithiobis(2-nitrobenzoic acid) showed a total of two free thiol groups per subunit, one of which is made accessible only under denaturing conditions. An isoelectric point of 5.2 was found for the native enzyme. Km values, determined at pH 7.5, were 6.1 and 90 microM for NADPH and GSSG, respectively. NADH was about 2% as active as NADPH as an electron donor. The enzyme's second choice in disulfide substrate was the mixed disulfide of coenzyme A and glutathione, for which the specific activity and Km values were 5.1 U/mg and 3.4 mM, respectively. A native molecular weight of 118,000 was found, while denaturing electrophoresis gave a value of 54,400 per subunit, thus suggesting that R. rubrum glutathione reductase exists as a dimeric protein. Other physicochemical constants of the enzyme, such as Stokes radius (4.2 nm) and sedimentation coefficient (5.71 S), were also consistent with a particle of 110,000.  相似文献   

11.
The interaction of phosphorylase B with the SH-reagents, i.e. 2-chloromercuri-4-nitrophenol and ethylmercurichloride was studied. It was shown that phosphorylase B inhibition obeys the pseudo-first-order kinetics, the inactivation rate constants being equal to 11 M-1 s-1 and 17,5 M-1 s-1, respectively. Data from the SH-group titration with 2-chloromercuri-4-nitrophenol and p-chloromercuri benzoate suggest that the number of modified cysteine residues and the amount of bound 2-chloromercuri-4-nitrophenol in the phosphorylase B dimer is equal to 2. In the modified phosphorylase B the absorption maximum of pyridoxal phosphate is decreased at 330 nm and is increased at 410 nm. The binding of 2-chloromercuri-4-nitrophenol is accompanied by quenching of the protein and coenzyme fluorescence. Upon interaction with ethylmercurichloride only the pyridoxalphosphate fluorescence is quenched. The increase of the spin label mobility in the modified enzyme calculated from the EPR spectra of the spin-labelled preparations is indicative of the changes in the protein conformation coupled with the blocking of one SH-group in the enzyme monomer. The rate of enzyme inactivation under effects of the SH-reagents is a function of pH and is considerably increased within the pH range of 5.7-6.7. The pH-optimum of activity of partly modified enzyme remains practically unchanged; however, at the pH shift towards the acidic values the activity is drastically decreased as compared to that of the native enzyme. The data obtained suggest that the enzyme inactivation is due to modification of one SH-group in the phosphorylase B monomer vicinal to the pyridoxal phosphate binding site and probably involved in the enzymatic reaction.  相似文献   

12.
Methyl-coenzyme M reductase (MCR) catalyses the formation of methane from methyl-coenzyme M (CH3-S-CoM) and coenzyme B (HS-CoB) in methanogenic archaea. The enzyme has an 222 subunit structure forming two structurally interlinked active sites each with a molecule F430 as a prosthetic group. The nickel porphinoid must be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-based electron paramagnetic resonance (EPR) signal and a UV–vis spectrum with an absorption maximum at 385 nm. This state is called the MCR-red1 state. In the presence of coenzyme M (HS-CoM) and coenzyme B the MCR-red1 state is in part converted reversibly into the MCR-red2 state, which shows a rhombic Ni(I)-based EPR signal and a UV–vis spectrum with an absorption maximum at 420 nm. We report here for MCR from Methanothermobacter marburgensis that the MCR-red2 state is also induced by several coenzyme B analogues and that the degree of induction by coenzyme B is temperature-dependent. When the temperature was lowered below 20°C the percentage of MCR in the red2 state decreased and that in the red1 state increased. These changes with temperature were fully reversible. It was found that at most 50% of the enzyme was converted to the MCR-red2 state under all experimental conditions. These findings indicate that in the presence of both coenzyme M and coenzyme B only one of the two active sites of MCR can be in the red2 state (half-of-the-sites reactivity). On the basis of this interpretation a two-stroke engine mechanism for MCR is proposed.  相似文献   

13.
Nitrous oxide reductase from Wolinella succinogenes was purified very nearly to homogeneity. The enzyme was found to be dimeric, with Mr = 162,000 and subunit Mr = 88,000, and to contain three copper atoms and one iron atom (as cytochrome c) per subunit. The oxidized enzyme exhibited absorption bands at 410 and 528 nm, and the dithionite-reduced enzyme, at 416, 520, and 550 nm. The isoelectric point was 8.6; specific activity was at 25 degrees C and pH 7.1, 160 mumol x min-1 x mg-1; and Km was 7.5 microM N2O under the same conditions. alpha-Chymotrypsin cleaved the enzyme into cytochrome c-depleted dimers with an average Mr = 134,000 and cytochrome c-enriched fragments with an average Mr = 13,000. The enzyme was stable at 4 degrees C for at least 100 h under air and 3 h in the presence of 5 mM EDTA. It exhibited a dithionite-N2O oxidoreductase as well as a BV+-N2O oxidoreductase activity. During turnover with BV+ at 25 mM N2O, the enzyme was observed to undergo an initial activation and a subsequent inactivation. The kinetics of inactivation were approximately first-order in remaining activity, and the first-order rate constant was essentially independent of the initial enzyme concentration. These characteristics are consistent with the occurrence of turnover-dependent inactivation. Acetylene was a relatively weak inhibitor, but cyanide and azide were rather strong inhibitors. The nitrous oxide reductase of W. succinogenes is quite different from that of denitrifying bacteria. The amount of activity in cell extracts and the absence of O2-labile nitrous oxide reductase suggested that the cytochrome c containing enzyme may be the only one produced by W. succinogenes.  相似文献   

14.
5-Aminolevulinate synthase (ALAS) and 8-amino-7-oxononanoate synthase (AONS) are homodimeric members of the α-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Previously, linking two ALAS subunits into a single polypeptide chain dimer yielded an enzyme (ALAS/ALAS) with a significantly greater turnover number than that of wild-type ALAS. To examine the contribution of each active site to the enzymatic activity of ALAS/ALAS, the catalytic lysine, which also covalently binds the PLP cofactor, was substituted with alanine in one of the active sites. Albeit the chemical rate for the pre-steady-state burst of ALA formation was identical in both active sites of ALAS/ALAS, the k(cat) values of the variants differed significantly (4.4±0.2 vs. 21.6±0.7 min(-1)) depending on which of the two active sites harbored the mutation. We propose that the functional asymmetry for the active sites of ALAS/ALAS stems from linking the enzyme subunits and the introduced intermolecular strain alters the protein conformational flexibility and rates of product release. Moreover, active site functional asymmetry extends to chimeric ALAS/AONS proteins, which while having a different oligomeric state, exhibit different rates of product release from the two ALAS and two AONS active sites due to the created intermolecular strain.  相似文献   

15.
Lactate dehydrogenase in Phycomyces blakesleeanus.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium.  相似文献   

16.
The active site residue lysine 258 of chicken mitochondrial aspartate aminotransferase was replaced with a histidine residue by means of site-directed mutagenesis. The mutant protein was expressed in Escherichia coli and purified to homogeneity. Addition of 2-oxoglutarate to its pyridoxamine form changed the coenzyme absorption spectrum (lambda max = 330 nm) to that of the pyridoxal form (lambda max = 330/392 nm). The rate of this half-reaction of transamination (kcat = 4.0 x 10(-4)s-1) is five orders of magnitude slower than that of the wild-type enzyme. However, the reverse half-reaction, initiated by addition of aspartate or glutamate to the pyridoxal form of the mutant enzyme, is only three orders of magnitude slower than that of the wild-type enzyme, kmax of the observable rate-limiting elementary step, i.e. the conversion of the external aldimine to the pyridoxamine form, being 7.0 x 10(-2)s-1. Aspartate aminotransferase (Lys258----His) thus represents a pyridoxal-5'-phosphate-dependent enzyme with significant catalytic competence without an active site lysine residue. Apparently, covalent binding of the coenzyme, i.e. the internal aldimine linkage, is not essential for the enzymic transamination reaction, and a histidine residue can to some extent substitute for lysine 258 which is assumed to act as proton donor/acceptor in the aldimine-ketimine tautomerization.  相似文献   

17.
Aromatic amine dehydrogenase was purified and characterized from Alcaligenes xylosoxidans IFO13495 grown on beta-phenylethylamine. The molecular mass of the enzyme was 95.5 kDa. The enzyme consisted of heterotetrameric subunits (alpha2beta2) with two different molecular masses of 42.3 kDa and 15.2 kDa. The N-terminal amino acid sequences of the alpha-subunit (42.3-kDa subunit) and the beta-subunit (15.2-kDa subunit) were DLPIEELXGGTRLPP and APAAGNKXPQMDDTA respectively. The enzyme had a quinone cofactor in the beta-subunit and showed a typical absorption spectrum of tryptophan tryptophylquinone-containing quinoprotein showing maxima at 435 nm in the oxidized form and 330 nm in the reduced form. The pH optima of the enzyme activity for histamine, tyramine, and beta-phenylethylamine were the same at 8.0. The enzyme retained full activity after incubation at 70 degrees C for 40 min. It readily oxidized various aromatic amines as well as some aliphatic amines. The Michaelis constants for phenazine methosulfate, beta-phenylethylamine, tyramine, and histamine were 48.1, 1.8, 6.9, and 171 microM respectively. The enzyme activity was strongly inhibited by carbonyl reagents. The enzyme could be stored without appreciable loss of enzyme activity at 4 degrees C for one month at least in phosphate buffer (pH 7.0).  相似文献   

18.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

19.
Bovine liver glutamate dehydrogenase is known to bind reduced coenzyme at two sites/subunit, one catalytic and one regulatory; ADP competes for the latter site. The enzyme is here shown to be catalytically active with the thionicotinamide analogue of NADPH [( S]NADPH). For native enzyme, ultrafiltration studies revealed that [S]NADPH reversibly occupies about two sites/enzyme subunit in the absence of other ligands; by the addition of ADP, [S]NADPH binding can be limited to one molecule/subunit. The enzyme is irreversibly inactivated by reaction with 4-(iodoacetamido)salicylic acid (ISA) at lysine126 within the 2-oxoglutarate binding site [Holbrook, J.J., Roberts, P.A. & Wallis, R.B. (1973) Biochem. J. 133, 165-171]. ISA-modified enzyme binds 1 molecule [S]NADPH/subunit in the absence of ADP, suggesting that reaction at the substrate site blocks binding at the catalytic, but not at the regulatory site. The fluorescence spectrum of ISA-modified enzyme overlaps the absorption spectrum of [S]NADPH allowing a distance measurement between these sites by resonance energy transfer. [S]NADPH quenches the emission of ISA-modified enzyme, yielding 3.2 nm as the average distance between sites. ADP competes for the [S]NADPH site but does not affect the fluorescence of ISA-modified enzyme, indicating that [S]NADPH quenching is attributable to energy transfer rather than to a conformational change. The 3.2 nm thus represents the distance between the 2-oxoglutarate and reduced coenzyme regulatory sites of glutamate dehydrogenase.  相似文献   

20.
Hydroxylamine and its derivatives of general formula H2NOR react with aldehydes and aldimines to produce oximes. If R corresponds to the side chain of a natural amino acid, such compounds can be thought of as analogs of the corresponding amino acids, lacking the alpha-carboxylate group. Oximes formed between such compounds and pyridoxal phosphate in the active site of aspartate amino-transferase mimic external aldimine intermediates that occur during catalysis by this enzyme. The properties of oxime derivatives of mitochondrial aspartate aminotransferase with hydroxylamine and 6 compounds H2NOR were studied by absorption spectroscopy and circular dichroism in solution and by linear dichroism in crystals. Stable oximes, absorbing at lambda max congruent to 380 nm and exhibiting a negative Cotton effect, were obtained with the carboxylate-containing compounds. The oximes formed with carboxylate-free compounds showed somewhat different properties and stability. With H-Tyr a stable complex absorbing at lambda max congruent to 370 nm rather than at 380 nm, was obtained, H-Ala and H-Phe produced unstable oximes with the initial absorption band at lambda max congruent to 380 nm that was gradually replaced by a band at lambda max congruent to 340 nm. The species absorbing at 340 nm were shown to be coenzyme-inhibitor complexes which were gradually released from the enzyme. A similar 330-340 nm absorption band was observed upon reaction of the free coenzyme with all hydroxylamine inhibitors at neutral pH-values. The results of the circular dichroism experiments in solution and the linear dichroism studies in microcrystals of mAspAT indicate that the coenzyme conformation in these inhibitor/enzyme complexes is similar to that occurring in an external aldimine analogue, the 2-MeAsp/mAspAT complex. Co-crystallizations of the enzyme with the H2NOR compounds were also carried out. Triclinic crystals were obtained in all cases, suggesting that the "closed" structure cannot be stabilized by a single carboxylate group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号