首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The main form of Se in animal tissues is selenocysteine in selenoproteins, but the relative importance of selenoproteins versus smaller Se compounds in cancer protection is unresolved. Selenoprotein W (SEPW1) is a highly conserved protein ubiquitously expressed in animals, bacteria, and archaea. SEPW1 depletion causes a delay in cell cycle progression at the G1/S transition of the cell cycle in breast and prostate epithelial cells. Tumor suppressor protein p53 is a master regulator of cell cycle progression and is the most frequently mutated gene in human cancers. p53 was increased in SEPW1 silenced cells and was inversely correlated with SEPW1 mRNA in cell lines with altered SEPW1 expression. Silencing SEPW1 decreased ubiquitination of p53 and increased p53 half-life. SEPW1 silencing increased p21(Cip1/WAF1/CDKN1A), while p27 (Kip1/CDKN1B) levels were unaffected. G1-phase arrest from SEPW1 knockdown was abolished by silencing p53 or p21. Cell cycle arrest from SEPW1 silencing was not associated with activation of ATM or phosphorylation of Ser-15 in p53, suggesting the DNA damage response pathway was not involved. Silencing GPX1 had no effect on cell cycle, suggesting that G1-phase arrest from SEPW1 silencing was not due to loss of antioxidant protection. More research is required to identify the function of SEPW1 and how it affects stability of p53.  相似文献   

3.
4.
Polycyclic aromatic hydrocarbons (PAH) are common environmental pollutants that suppress the immune system in part by inducing pro/pre-B cell apoptosis. The PAH-induced death signaling pathway resembles the signaling cascade activated during clonal deletion and modeled by B cell receptor cross-linking or by dexamethasone exposure of immature surface Ig(+) B cells in that apoptosis is mediated by NF-kappa B down-regulation. Because a PAH-induced, clonally nonrestricted deletion of B cells would have important implications for B cell repertoire development, the nature of the PAH-induced intracellular death signal was studied further. Particular emphasis was placed on the roles of growth arrest and c-Myc, p27(Kip1), and p21(WAF1) expression, because all of these elements contribute to clonal deletion. As in clonal deletion models, and as predicted by the down-regulation of NF-kappa B, PAH-induced death of pro/pre-B cells was at least partially dependent on c-Myc down-regulation. Furthermore, whereas dexamethasone induced a G(0)/G(1) cell cycle arrest, PAH had no effect on pro/pre-B cell growth, indicating that growth arrest and apoptosis occur by separable signaling pathways in this early phase of B cell development. Finally, in contrast to clonal deletion, PAH-induced pro/pre-B cell death was not dependent on p27(Kip1) or p21(WAF1) up-regulation but did coincide with p53 induction. These results distinguish the PAH-induced apoptosis pathway from that activated during clonal deletion and indicate that signaling cascades leading to growth arrest and/or apoptosis in pro/pre-B cells differ from those active at later B cell developmental stages.  相似文献   

5.
6.
We investigated the role of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) in cell cycle regulation during hypoxia and reoxygenation. While moderate hypoxia (1 or 0.1% oxygen) does not significantly impair bromodeoxyuridine incorporation, at very low oxygen tensions (0.01% oxygen) DNA replication is rapidly shut down in immortalized mouse embryo fibroblasts. This S-phase arrest is intact in fibroblasts lacking the cyclin kinase inhibitors p21(Cip1) and p27(Kip1), indicating that these molecules are not essential elements of the arrest pathway. Hypoxia-induced arrest is accompanied by dephosphorylation of pRb and inhibition of cyclin-dependent kinase 2, which results in part from inhibitory phosphorylation. Interestingly, cells lacking the retinoblastoma tumor suppressor protein also display arrest under hypoxia, suggesting that pRb is not an essential mediator of this response. Upon reoxygenation, DNA synthesis resumes by 3.5 h and reaches aerobic levels by 6 h. Cells lacking p21, however, resume DNA synthesis more rapidly upon reoxygenation than wild-type cells, suggesting that this inhibitor may play a role in preventing premature reentry into the cell cycle upon cessation of the hypoxic stress. While p27 null cells did not exhibit rapid reentry into the cell cycle, cells lacking both p21 and p27 entered S phase even more aggressively than those lacking p21 alone, revealing a possible secondary role for p27 in this response. Cdk2 activity is also restored more rapidly in the double-knockout cells when returned to normoxia. These studies reveal that restoration of DNA synthesis after hypoxic stress, but not the S phase arrest itself, is regulated by p21 and p27.  相似文献   

7.
8.
前列腺素A2(PGA2)具有强的体内、外抗增殖活性,引起细胞周期阻滞,同时,可诱导cdk抑制物p21蛋白的表达,后者亦可介导多种细胞的G1阻滞.提示p21waf1/cip1在PGA2诱导的细胞周期阻滞中具有重要作用.主要介绍了近两年来有关p21waf1/cip1与转录因子E2F间的相互作用的研究,阐述p21waf1/cip1在PGA2介导的细胞周期阻滞中的作用机制.  相似文献   

9.
p21, a potent cyclin-dependent kinase inhibitor, has been known to induce cell cycle arrest in response to DNA-damaging agents. Although p21 has been reported to play an important role in the regulation of apoptosis, the postulated role for p21 in apoptosis is still controversial. Previously, we reported that p21 was induced in a p53-independent manner during ceramide-induced apoptosis in human hepatocarcinoma cell lines. In the present study, we investigated the precise role of p21 in ceramide-induced apoptosis in human hepatocarcinoma cells by using a tetracycline-inducible expression system. Overexpression of p21 by itself did not induce apoptosis in p53-deficient Hep3B cells. However, Hep3B/p21 cells were more sensitive to ceramide-induced apoptosis. In these cells, p21 overexpression did not result in G1 arrest. The expression level of Bax was increased in Hep3B/p21 cells treated with ceramide and its expression was more accelerated under the p21-overexpressed condition compared to that of the p21-repressed condition. Overexpression of Bax induced apoptosis in Hep3B cells. On the other hand, the levels of p21 and Bax protein were increased by ceramide in another hepatocarcinoma cell line, SK-Hep-1, while the Bcl-2 protein level was not changed. Overexpression of Bcl-2 not only suppressed apoptosis but also completely prevented induction of p21 and Bax caused by ceramide in SK-Hep-1 cells. Furthermore, overexpression of p21 antagonized the death-protective function of Bcl-2 and upregulated expression of Bax protein. These results suggest that p21 promotes ceramide-induced apoptosis by enhancing the expression of Bax, thereby modulating the molecular ratio of Bcl-2:Bax in human hepatocarcinoma cells.  相似文献   

10.
de Oliveira RM 《FEBS letters》2006,580(24):5753-5758
Klotho has recently emerged as a regulator of aging. To investigate the role of Klotho in the regulation of cellular senescence, we generated stable MRC-5 human primary fibroblast cells knockdown for Klotho expression by RNAi. Downregulation of Klotho dramatically induces premature senescence with a concomitant upregulation of p21. The upregulation of p21 is associated with cell cycle arrest at G1/S boundary. Knockdown of p53 in the Klotho attenuated MRC-5 cells restores normal growth and replicative potential. These results demonstrate that Klotho normally regulates cellular senescence by repressing the p53/p21 pathway. Our findings implicate Klotho as a regulator of aging in primary human fibroblasts.  相似文献   

11.
Toshiki Itoh  Stuart Linn   《DNA Repair》2005,4(12):358-1462
p21(CDKN1A) is a critical regulator of cell cycle progression in response to DNA damage. There are conflicting conclusions as to whether p21(CDKN1A) levels increase or decrease after ultraviolet (UV)-irradiation and recently it was even reported to disappear entirely following 2.5-30 Jm(-2) of UV-irradiation in the presence of growth medium. The latter would suggest an alternative mechanism for cell cycle arrest after UV-irradiation, since p21(CDKN1A) induction has been considered to be the major mediator of p53-mediated cell cycle arrest after DNA damage. Using physiological UV doses based on cell-killing, we previously observed and here verify that low doses (1.2-6 Jm(-2)) induce p21(CDKN1A) immediately after UV-irradiation, though higher doses cause a latency during which p21(CDKN1A) levels remain fairly constant before increasing. As expected, p53 induction preceded p21(CDKN1A) induction at all doses. Thus, p21(CDKN1A) levels after low doses of UV-irradiation may be controlled in a p53-dependent manner without severe reduction. We propose that physiological relevant UV doses should be determined for each target cell type prior to studying UV-induced responses and that p21(CDKN1A) is indeed critical for cell cycle arrest in cells that survive UV-irradiation.  相似文献   

12.
Prolonged exposure to hyperoxia inhibits cell proliferation in G1 via increased expression of p21. While p21 inhibits proliferating cell nuclear antigen (PCNA)-dependent DNA synthesis, it can also directly lower PCNA abundance; however, it is unclear whether loss of PCNA contributes to growth arrest. Here, we investigate how PCNA loss affects ability of p21 to exert G1 growth arrest of lung epithelial cells exposed to hyperoxia. In A549 cells that express p21 and growth arrest in G1 during hyperoxia, small interfering RNA (siRNA) knockdown of p21 led to G1 checkpoint bypass, increased cell death, and restoration of PCNA expression. Conditional overexpression of the PCNA binding domain of p21 in H1299 cells that do not normally express p21, or exposure to hyperoxia, caused a time-dependent loss of PCNA. Titrating PCNA levels using siRNA to approximate the low amount observed in cells expressing p21 resulted in S phase arrest. While lowering PCNA by itself caused S phase arrest, the combination of hyperoxia and siRNA against PCNA dramatically reduced PCNA abundance resulting in G1 arrest. G1 growth arrest was markedly enhanced upon the addition of p21 to these cells. Our findings suggest a model in which reducing expression of the abundant protein PCNA allows the less abundant protein p21 to be more effective at suppressing the processivity functions of remaining PCNA, thereby fully exerting the G1 checkpoint. Given that high p21 expression is often associated with lower PCNA abundance, our findings are suggestive of a global growth inhibitory mechanism involving p21-mediated PCNA suppression.  相似文献   

13.
Our previous studies have shown that cells conditionally deficient in Tsg101 arrested at the G(1)/S cell cycle checkpoint and died. We created a series of Tsg101 conditional knock-out cell lines that lack p53, p21(Cip1), or p19(Arf) to determine the involvement of the Mdm2-p53 circuit as a regulator for G(1)/S progression and cell death. In this new report we show that the cell cycle arrest in Tsg101-deficient cells is p53-dependent, but a null mutation of the p53 gene is unable to maintain cell survival. The deletion of the Cdkn1a gene in Tsg101 conditional knock-out cells resulted in G(1)/S progression, suggesting that the p53-dependent G(1) arrest in the Tsg101 knock-out is mediated by p21(Cip1). The Cre-mediated excision of Tsg101 in immortalized fibroblasts that lack p19(Arf) seemed not to alter the ability of Mdm2 to sequester p53, and the p21-mediated G(1) arrest was not restored. Based on these findings, we propose that the p21-dependent cell cycle arrest in Tsg101-deficient cells is an indirect consequence of cellular stress and not caused by a direct effect of Tsg101 on Mdm2 function as previously suggested. Finally, the deletion of Tsg101 from primary tumor cells that express mutant p53 and that lack p21(Cip1) expression results in cell death, suggesting that additional transforming mutations during tumorigenesis do not affect the important role of Tsg101 for cell survival.  相似文献   

14.
Kuo PL  Lin TC  Lin CC 《Life sciences》2002,71(16):1879-1892
The aim of this study is to investigate the anticancer effect of aloe-emodin in two human liver cancer cell lines, Hep G2 and Hep 3B. We observed that aloe-emodin inhibited cell proliferation and induced apoptosis in both examined cell lines, but with different the antiproliferative mechanisms. In Hep G2 cells, aloe-emodin induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin induced apoptosis by enhancing expression of Bax. These findings suggest that aloe-emodin may be useful in liver cancer prevention.  相似文献   

15.
16.
Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.  相似文献   

17.
Signal transduction pathway and a new function of TIS21/BTG2/PC3 were investigated in p53 null U937 cells; Expression of TIS21 by 12-O-tetradecanoyl phorbol-13-acetate (TPA) stimulation was mediated by PKC-delta activation, however, was strongly inhibited by cPKC isozymes. When U937 cells were treated with TPA+Go6976, but not TPA+Go6850, the level of TIS21 mRNA was maintained over that of TPA alone. When analyzed by FACS, TPA-induced G2/M arrest was significantly inhibited by Go6850, but not by Go6976, suggesting the involvement of TIS21 and nPKC isozymes. Indeed, PKC-delta was found to be a regulator of the G2/M arrest and TIS21 expression, confirmed by employing rottlerin and dnPKC-delta experiments. In vivo accumulation of TIS21 protein significantly induced cell death through caspase 3 activation, which was supported further by degradations of procaspase 3, full-length PKC-delta, pRB, and p21(WAF1) in TIS21DeltaC expresser. When the cells were synchronized by nocodazole, TIS21 overexpressers inhibited degradations of cyclin A and cyclin B1 in 3 h after release from the synchronization. Furthermore, TIS21 inhibited cyclin B1-Cdc2 binding and its kinase activity in vivo. In summary, TPA-induced TIS21 mRNA expression is mediated by PKC-delta, and TIS21 induces G2/M arrest and cell death by inhibiting cyclin B1-Cdc2 binding and the kinase activity through its binding to Cdc2.  相似文献   

18.
UV or g irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21WAF1 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21WAF1 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21WAF1 function.  相似文献   

19.
In vitro cultured mammalian cells respond to mild hypothermia (27-33?°C) by attenuating cellular processes and slowing and arresting the cell cycle. The slowing of the cell cycle at the upper range (31-33?°C) and its complete arrest at the lower range (27-28?°C) of mild hypothermia is effected by the activation of p53 and subsequent expression of p21. However, the mechanism by which cold is perceived in mammalian cells with the subsequent activation of p53 has remained undetermined. In the present paper, we report that the exposure of Chinese-hamster ovary-K1 cells to mildly hypothermic conditions activates the ATR (ataxia telangiectasia mutated- and Rad3-related kinase)-p53-p21 signalling pathway and is thus a key pathway involved in p53 activation upon mild hypothermia. In addition, we show that although p38MAPK (p38 mitogen-activated protein kinase) is also involved in activation of p53 upon mild hypothermia, this is probably the result of activation of p38MAPK by ATR. Furthermore, we show that cold-induced changes in cell membrane lipid composition are correlated with the activation of the ATR-p53-p21 pathway. Therefore we provide the first mechanistic detail of cell sensing and signalling upon mild hypothermia in mammalian cells leading to p53 and p21 activation, which is known to lead to cell cycle arrest.  相似文献   

20.
Throughout development cells make the decision to proliferate, arrest or die. Control of this process is essential for normal development, with unrestrained cell proliferation and cell death underling the origin and progression of disease. The cell-cycle is tightly regulated by a number of factors including the cyclin-dependent kinase inhibitor 1A (Cdkn1a), termed p21 (or Cip1 or WAF1). p21 acts as a negative regulator of cell-cycle progression by binding and inhibiting complexes formed between the cyclin-dependent kinases and their catalytic partners the cyclins. In this report we identify the temporal spatial expression profile of p21 in the developing mid-term mouse embryo using a p21-LacZ reporter mouse line. Expression of p21 was restricted to specific regions with a correspondence to both areas of terminal differentiation and active remodelling. A complex temporal and spatial relationship between p21 expression and regions of apoptosis was evident. A protective role with regard to apoptosis for p21 is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号