首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Sun M  Qian K  Su N  Chang H  Liu J  Shen G  Chen G 《Biotechnology letters》2003,25(13):1087-1092
A Chlamydomonas reinhardtii chloroplast expression vector, pACTBVP1, containing the fusion of the foot and mouth disease virus (FMDV) VP1 gene and the cholera toxin B subunit (CTB) gene was constructed and transfered to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by PCR, Southern blot, Western blot and ELISA assays after selection on resistant medium and incubation in the dark. The CTBVP1 fusion protein was expressed in C. reinhardtii chloroplast and accounted for up to 3% of the total soluble protein. The fusion protein also retained both GM1-ganglioside binding affinity and antigenicity of the FMDV VP1 and CTB proteins. These experimental results support the possibility of using transgenic chloroplasts of green alga as a mucosal vaccine source.  相似文献   

2.
Chloroplast Transformation in Oilseed Rape   总被引:24,自引:0,他引:24  
The chloroplast transformation vector pNRAB carries two expression cassettes for the spectinomycin resistance gene aadA and the insect resistance gene cry1Aa10. The two cassettes are sited between the rps7 and ndhB targeting fragments. Biolistic delivery of the vector DNA, followed by spectinomycin selection, yielded chloroplast transformants at a frequency of four in 1000 bombarded cotyledon petioles. PCR analysis and Southern blot of PCR products confirmed the site-specific integration of aadA and cry1Aa10 into the chloroplast genomes of transgenic oilseed rape. When transgenic oilseed rape leaves were fed to second instar Plutella xylostera larvae, 47% mortality was observed against this insect and the surviving larvae had significantly lower weight than the control. This is the first report of chloroplast transformation in oilseed rape and the introduction of novel genes between the rps7 and ndhB genes in the chloroplast genome. This offers an opportunity for improvement of oilseed rape by chloroplast genetic engineering.  相似文献   

3.
Chloroplast transformation systems offer unique advantages in biotechnology, including high level of foreign gene expression, maternal inheritance, and polycistronic expression. We studied chloroplast expression of LTK63 (change Ser-->Lys at position 63 in the A subunit) which is the mutant of Escherichia coli heat-labile toxin. LTK63 is devoid of any toxic activity, but still retains its mucosal adjuvanticity. The LTK63 was cloned into chloroplast targeting vector and transformed to tobacco chloroplasts by particle bombardment. PCR and Southern blot analyses confirmed stable homologous recombination of the LTK63 gene into the chloroplast genome. The amount of LTK63 protein detected in tobacco chloroplasts was approximately 3.7% of the total soluble protein. The GM1-ganglioside binding assay confirmed that chloroplast-synthesized LTB of LTK63 binds to the intestinal membrane GM1-ganglioside receptor. Thus, the expression of LTK63 in chloroplasts provides a potential route toward the development of a plant-based edible vaccine for high expression system and environmentally friendly approach.  相似文献   

4.
A protocol for chloroplast transformation of an elite rapeseed cultivar (Brassica napus L.) was developed based on optimized conditions for callus induction and regeneration from cotyledonary tissues. Comparison of six different media with three elite cultivars showed that B5 medium plus 3 mg/l AgNO3 supplemented with 0.6 mg/l 2,4-dichlorophenoxyacetic acid and 0.2 mg/l 6-furfurylaminopurine was optimal for callus formation and maintenance without differentiation, while the medium suitable for regeneration was B5 medium supplemented with 1 mg/l 6-benzylaminopurine, 1 mg/l 6-furfurylaminopurine and 0.5 mg/l α-naphthaleneacetic acid. A rapeseed-specific chloroplast transformation vector was constructed with the trnI and trnA sequences amplified from the rapeseed chloroplast genome using two primers designed according to Arabidopsis homologs. The aadA gene was used as a selection marker regulated by the ribosome-binding site from the bacteriophage T7 gene 10L, the tobacco 16S rRNA promoter and the psbA terminator. After bombardment, cotyledonary segments were cultured for callus formation on media containing 10 mg/l spectinomycin and regeneration was carried out on medium with 20 mg/l spectinomycin. Heteroplasmic plastid transformants were isolated. An overall efficiency for the chloroplast transformation was one transplastomic plant per four bombarded plates. Southern blot analyses demonstrated proper integration of the target sequence into the rapeseed chloroplast genome via homologous recombination. The expression of the aadA gene was confirmed by Northern blot analysis. Analysis of T1 transplastomic plants revealed that the transgenes integrated into the chloroplast were inheritable with a ratio of about 8%. These results suggest that rapeseed may be a suitable crop for chloroplast transformation with cotyledons as explants under appropriate conditions.  相似文献   

5.
来源于Pyrococcusfuriosus的耐高温α-淀粉酶是一种重要的酒精工业用酶,在植物中表达耐高温α-淀粉酶可以大大降低用植物秸秆生产酒精的成本。选择衣藻叶绿体基因组同源片段clpP-trnL-petB-chlL-rpl23-rpl2和壮观霉素抗性基因,构建了来源于Pyrococcusfuriosus的耐高温α-淀粉酶基因的衣藻叶绿体表达载体p64A。通过基因枪将其导入衣藻叶绿体中,经壮观霉素抗性(100mg/L)筛选,获得了9个抗性衣藻转化子。转化子经过抗性继代筛选后,经PCR、Southernblot检测分析及暗培养,证实耐高温α-淀粉酶基因已整合到衣藻叶绿体基因组中并得到表达。酶活性检测表明,转基因衣藻表达产物具有耐高温α-淀粉酶活性,每克鲜重衣藻最高达77.5u。实验结果证明在植物叶绿体中表达工业酶制剂是可行的。  相似文献   

6.
7.
8.
The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1 % of total soluble tobacco leaf protein as functional oligomers (410-fold higher expression levels than that of the unmodified LTB gene expressed via the nuclear genome). However, expression levels reported are an underestimation of actual accumulation of CTB in transgenic chloroplasts, due to aggregation of the oligomeric forms in unboiled samples similar to the aggregation observed for purified bacterial antigen. PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that the chloroplast- synthesized CTB assembled into oligomers and were antigenically identical with purified native CTB. Also, binding assays confirmed that chloroplast-synthesized CTB binds to the intestinal membrane GM1-ganglioside receptor, indicating correct folding and disulfide bond formation of CTB pentamers within transgenic chloroplasts. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed in chloroplasts. Introduced genes were inherited stably in subsequent generations, as confirmed by PCR and Southern blot analyses. Increased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant-based oral vaccines and fusion proteins with CTB needing oral administration commercially feasible. Successful expression of foreign genes in transgenic chromoplasts and availability of marker-free chloroplast transformation techniques augurs well for development of vaccines in edible parts of transgenic plants. Furthermore, since the quaternary structure of many proteins is essential for their function, this investigation demonstrates the potential for other foreign multimeric proteins to be properly expressed and assembled in transgenic chloroplasts.  相似文献   

9.
Arabidopsis thaliana peptide deformylase PDF1B was expressed in tobacco chloroplasts using spectinomycin as the selective agent. The foreign protein accumulated in chloroplasts (6% of the total soluble protein) and was enzymatically active. Transplastomic plants were evaluated for resistance to the peptide deformylase inhibitor actinonin. In vitro seed germination in the presence of actinonin and in planta application of the inhibitor demonstrated the resistance of the transformed plants. In addition, transgenic leaf explants were able to develop shoots via organogenesis in the presence of actinonin. However, when the combination of the PDF1B gene and actinonin was used as the primary selective marker system for chloroplast transformation of tobacco, all developed shoots were escapes. Therefore, under the experimental conditions tested, the use of this system for plastid transformation would be limited to function as a secondary selective marker.  相似文献   

10.
Liu CW  Lin CC  Chen JJ  Tseng MJ 《Plant cell reports》2007,26(10):1733-1744
The objectives of this research were first to isolate plastid gene sequences from cabbage (Brassica oleracea L. var. capitata L.), and to establish the chloroplast transformation technology of Brassica. A universal transformation vector (pASCC201) for Brassica chloroplast was constructed with trnVrrn16S (left) and trnItrnArrn23S (right) of the IRA region as a recombination site for the transformed gene. In transforming plasmid pASCC201, a chimeric aadA gene was cloned between the rrn16S and rrn23S plastid gene borders. Expression of aadA confers resistance to spectinomycin and streptomycin antibiotics. The uidA gene was also inserted into the pASCC201 and transferred into the leaf cells of cabbage via particle gun mediated transformation. Regenerated plantlets were selected by 200 mg/l spectinomycin and streptomycin. After antibiotic selection, the regeneration percentage of the two cabbage cultivars was about 2.7–3.3%. The results of PCR testing and Southern blot analysis confirmed that the uidA and aadA genes were present in the chloroplast genome via homologously recombined. Northern blot hybridizations, immunoblotting and GUS histochemical assays indicated that the uidA gene were stable integrated into the chloroplast genome. Foreign protein was accumulated at 3.2–5.2% of the total soluble protein in transgenic mature leaves. These results suggest that the expression of a variety of foreign genes in the chloroplast genome will be a powerful tool for use in future studies.  相似文献   

11.
Chloroplast genetic engineering is an environmentally friendly approach, where the foreign integrated gene is often expressed at a higher level than nuclear transformation. The cry1Ab gene was successfully transferred into the cabbage chloroplast genome in this study. The aadA and cry1Ab genes were inserted into the pASCC201 vector and driven by the prrn promoter. The cabbage-specific plastid vectors were transferred into the chloroplasts of cabbage via particle gun mediated transformation. Regenerated plantlets were selected by their resistance to spectinomycin and streptomycin. According to antibiotic selection, the regeneration percentage of the two cabbage cultivars was 4-5%. The results of PCR, Southern, Northern hybridization and western analyses indicated that the aadA and cry1Ab genes were not only successfully integrated into the chloroplast genome, but functionally expressed at the mRNA and protein level. Expression of Cry1Ab protein was detected in the range of 4.8-11.1% of total soluble protein in transgenic mature leaves of the two species. Insecticidal effects on Plutella xylostella were also demonstrated in cry1Ab transformed cabbage. The objectives of this study were to establish a gene transformation system for Brassica chloroplasts, and to study the possibility for insect-resistance in dicot vegetables using chloroplast gene transformation.  相似文献   

12.
Transgenic chloroplasts have become attractive systems for heterologous gene expressions because of unique advantages. Here, we report a feasibility study for producing the nontoxic B subunit of Escherichia coli heat-labile enterotoxin (LTB) via chloroplast transformation of tobacco. Stable site-specific integration of the LTB gene into chloroplast genome was confirmed by PCR and genomic Southern blot analysis in transformed plants. Immunoblot analysis indicated that plant-derived LTB protein was oligomeric, and dissociated after boiling. Pentameric LTB molecules were the dominant molecular species in LTB isolated from transgenic tobacco leaf tissues. The amount of LTB protein detected in transplastomic tobacco leaf was approximately 2.5% of the total soluble plant protein, approximately 250-fold higher than in plants generated via nuclear transformation. The GM1-ELISA binding assay indicated that chloroplast-synthesized LTB protein bound to GM1-ganglioside receptors. LTB protein with biochemical properties identical to native LTB protein in the chloroplast of edible plants opens the way for inexpensive, safe, and effective plant-based edible vaccines for humans and animals.  相似文献   

13.
As because the plant plastid genome is highly polyploid, the transformation of chloroplasts permits the introduction of thousands of copies of foreign genes per plant cell and generates extraordinarily high levels of recombinant protein. Human tissue-type plasminogen activator is one of the most important pharmaceutical proteins involved in the breakdown of blood clots in brain and heart blood vessels. We report the introduction and expression of the truncated human tissue plasminogen activator (K2S) gene in tobacco chloroplasts. The K2S-containing vector pKCZK2S was successfully transferred to tobacco plastomes using the biolistic delivery procedure. Transplastomic plants were selected on RMOP medium containing spectinomycin (500 mg/l). In order to achieve homoplasmy, several rounds of selection and regeneration were performed. The presence, site-specific integration, homoplasmy, expression and activity assay of the transgene were confirmed in the transplastomic plants by PCR, Southern-blot, RT-PCR, SDS-PAGE, ELISA, Dot-blot, Western-blot and zymography analysis. Our results show that the tissue plasminogen activator (K2S form) protein to be expressed in tobacco chloroplasts in active form.  相似文献   

14.
The earthworm fibrinolytic enzyme, which belongs to a group of serine proteases with strong fibrinolytic activity, has been used as an oral drug for prevention and treatment of thrombosis in East Asia. Fibrizyme is a fibrinolytic enzyme isolated from the earthworm Eisenia andrei. Here we report genetic engineering of tobacco plastids with stable integration of the fibrizyme gene into the tobacco chloroplast genome. A plastid transformation vector was constructed by introducing various regulatory elements into fibrizyme cDNA. This vector was delivered by particle bombardment into tobacco leaf explants and plastid-transformed plants were subsequently regenerated into whole plants through several rounds of selection. We confirmed stable integration of the fibrizyme gene into the tobacco plastid genome by PCR and Southern blot analyses. Northern and Western blot analyses revealed that mRNA and protein of recombinant fibrizyme were highly expressed in transformed tobacco plants.  相似文献   

15.
The chloroplast transformation system has the potential advantages of maternal inheritance and high-level expression of heterologous genes. We studied the expression of the bar gene in tobacco chloroplasts to test these ideas. The bar gene conferring tolerance to the herbicide phosphinothricin (PPT) encodes phosphinothricin acetyltransferase (PAT). It was introduced into the chloroplast genome at a targeted site by homologous recombination. Transplastomic plantlets were selected in medium supplemented with PPT (up to 50 mg l(-1)). The polymerase chain reaction (PCR) and Southern blot analysis confirmed that bar had been inserted at the specified site in the chloroplast genome. The transplastomic plants transferred to a greenhouse proved to be resistant to 2% PPT. Reciprocal crosses between wild type and transplastomic plants confirmed maternal inheritance of the PPT resistance and high levels of PAT activity in the transplastomic plants were confirmed by assays of PAT and of ammonium evolution. The technology demonstrated here could perhaps be usefully transferred to other crop species.  相似文献   

16.
FtsZ1-1 and MinD plastid division-related genes were identified and cloned from Brassica oleracea var. botrytis. Transgenic tobacco plants expressing BoFtsZ1-1 or BoMinD exhibited cells with either fewer but abnormally large chloroplasts or more but smaller chloroplasts relative to wild-type tobacco plants. An abnormal chloroplast phenotype in guard cells was found in BoMinD transgenic tobacco plants but not in BoFtsZ1-1 transgenic tobacco plants. Transgenic tobacco plants bearing the macro-chloroplast phenotype had 10 to 20-fold increased levels of total FtsZ1-1 or MinD, whilst the transgenic tobacco plants bearing the mini-chloroplast phenotype had lower increased FtsZ1-1 or absence of detectable MinD. We also described for the first time, plastid transformation of macro-chloroplast bearing tobacco shoots with a gene cassette allowing for expression of green fluorescent protein (GFP). Homoplasmic plastid transformants from normal chloroplast and macro-chloroplast tobacco plants expressing GFP were obtained. Both types of transformants accumulated GFP at ~6% of total soluble protein, thus indicating that cells containing macro-chloroplasts can regenerate shoots in tissue culture and can stably integrate and express a foreign gene to similar levels as plant cells containing a normal chloroplast size and number.  相似文献   

17.
Plastid engineering technique has been established only in Nicotiana tabacum, and the widespread application is severely limited so far. In order to exploit a method to transfer the genetically transformed plastomes already obtained in tobacco into other plant species, somatic cell fusion was conducted between a plastome transformant of tobacco and a cultivar of petunia (Petunia hybrida). A tobacco strain whose plastids had been transformed with aadA (a streptomycin/spectinomycin adenylyltransferase gene) and mdar [a gene for monodehydroascorbate reductase (MDAR)] and a petunia variety, ‘Telstar’, were used as cell fusion partners. An efficient regeneration system from the protoplasts of both the parents, and effectiveness of selection for the aadA gene with spectinomycin were established before the cell fusion. In addition, the influence of UV irradiation on the callus development from the protoplasts and shoot regeneration of tobacco was investigated. Protoplasts were cultured after cell fusion treatment with polyethylene glycol, and asymmetric somatic cybrids were selected using the aadA gene as a marker. Although many shoots of tobacco that had escaped the UV irradiation regenerated, several shoots possessing the morphology of petunia and the resistance to spectinomycin were obtained. Molecular analyses of the petunia type regenerants demonstrated that they had the nuclear and mitochondrial genomes derived from petunia besides the chloroplasts of tobacco transformed with aadA and mdar. Furthermore, it was ascertained that mdar was transcribed in the somatic cybrids. The results indicate the success in intergeneric transfer of transformed plastids of tobacco into petunia.  相似文献   

18.
烟草质体多顺反子定点整合表达载体的构建和转化   总被引:1,自引:0,他引:1  
构建了烟草质体多顺反子定点整合表达载体pLM4(-psaA-Prrn-RBS-man-RBS-gfp-RBS-aadA-psbA3'-psbC-).用基因枪将该载体轰击烟草叶片5次,用添加了壮观霉素的选择分化培养基筛选,获得质体转基因烟草6株.用PCR、激光扫描、Western blot和RFLP等方法检测都证实多顺反子表达盒中的3个基因甘露聚糖酶基因(man)、绿荧光蛋白基因(gfp)、氨基糖苷3'-腺苷酰基转移酶基因(aadA)已整合到烟草质体基因组中,且均得到表达.  相似文献   

19.
叶绿体虽然是植物细胞内一种极其重要的细胞器,但其分裂的分子机制尚不很清楚。已经证明FtsZ蛋白作为真核细胞分裂装置的一个关键成分,参与叶绿体的分裂过程。烟草的FtsZ基因属于2个不同的家族,在对NtFtsZ1家族成员研究的基础上,用正义和反义表达技术研究了NtFtsZ2家族成员NtFtsZ2-1基因在转基因烟草中的功能。显微分析结果表明NtFtsZ2-1基因的表达水平异常增强或减弱都会严重干扰叶绿体的正常分裂过程,导致叶绿体在形态和数目上的异常(体积明显增大,数目显著减少),而单个叶肉细胞中叶绿体的总表面积在正反义转基因烟草和野生型烟草之间保持了相对稳定,没有发生明显的变化。同时还证明NtFtsZ2-1基因表达的变化对叶绿素含量和叶绿体的光合作用能力没有直接的影响。据此我们认为NtFtsZ2-1基因参与叶绿体的分裂和体积的扩大,其表达水平的波动会改变植物中叶绿体的数目和大小,而且在叶绿体的数目与体积之间可能存在一种补偿机制,保证叶绿体能最大限度地吸收光能,从而使光合作用得以正常进行。  相似文献   

20.
Summary A Chlamydomonas reinhardtii (C. reinhardtii) chloroplast expression vector, papc-B, containing the apc-B gene that encodes the beta subunit of the light-harvesting antenna protein allophycocyanin (APC) of cyanobacteria, was constructed and transferred to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by Southern blot, Western blot and ELISA assays after selection on resistant medium. The recombinant APC beta subunit was expressed in the C. reinhardtii chloroplast and accounted for up to 2–3% (w/w) of the total soluble protein (TSP), suggesting a promising prospect of using C. reinhardtii chloroplasts to produce functional plant-derived proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号