首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Bone tumors     
  相似文献   

9.
10.
11.
12.
13.
14.
Bone lamellae     
I A Mj?r 《Acta anatomica》1969,73(1):127-135
  相似文献   

15.
16.
Bone Bank     
A. J. Kergin 《CMAJ》1953,68(2):115-117
  相似文献   

17.
Bone poroelasticity   总被引:30,自引:0,他引:30  
Poroelasticity is a well-developed theory for the interaction of fluid and solid phases of a fluid-saturated porous medium. It is widely used in geomechanics and has been applied to bone by many authors in the last 30 years. The purpose of this work is, first, to review the literature related to the application of poroelasticity to the interstitial bone fluid and, second, to describe the specific physical and modeling considerations that establish poroelasticity as an effective and useful model for deformation-driven bone fluid movement in bone tissue. The application of poroelasticity to bone differs from its application to soft tissues in two important ways. First, the deformations of bone are small while those of soft tissues are generally large. Second, the bulk modulus of the mineralized bone matrix is about six times stiffer than that of the fluid in the pores while the bulk moduli of the soft tissue matrix and the pore water are almost the same. Poroelasticity and electrokinetics can be used to explain strain-generated potentials in wet bone. It is noted that strain-generated potentials can be used as an effective tool in the experimental study of local bone fluid flow, and that the knowledge of this technique will contribute to the answers of a number of questions concerning bone mineralization, osteocyte nutrition and the bone mechanosensory system.  相似文献   

18.
19.
Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号