首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Aggregation is a defensive strategy employed by many prey species in response to predatory threat. Our group has characterized defensive aggregation (huddling) in Rattus norvegicus in response to a ball of cat fur. In this situation some rats huddle less, and approach the threatening cue more than others (active vs. passive responders). The present study explored whether active responding is a stable phenotype associated with behaviors outside direct predatory encounters. The neural substrates of active and passive responding under predatory threat were explored using c-Fos immunohistochemistry. Finally, we examined whether the presence of conspecifics during predatory threat biases behavior towards active responding. Active and passive responding styles were found to be stable in individual rats across consecutive group exposures to cat fur, and were predicted by anxiety-like behavior in an open-field emergence test. Active responders displayed less conditioned fear in an environment associated with predatory threat, and had higher post-exposure intake of a weak sucrose solution (a test of “anhedonia”). Active responding was associated with: greater cat fur-induced activation of the accessory olfactory bulb, reflecting greater olfactory stimulation in rats actively approaching the fur; lowered activation of somatosensory cortex, reflecting reduced huddling with conspecifics; and reduced activation in the lateral septum. Social exposure to cat fur promoted active responding relative to individual exposure, and lowered c-Fos expression in the dorsomedial periaqueductal grey, medial caudate putamen and lateral habenula. We conclude that individual differences in anti-predator behavior appear stable traits with active responders having a more resilient phenotype. Social exposure to predatory threat has an acute buffering effect, subtly changing the neural and behavioral response towards threat and encouraging active responding. An association between active responding and lower c-Fos expression in the lateral septum is consistent with previous studies that highlight this region as an important neurobiological substrate of defensive aggregation.  相似文献   

2.
Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus–Toxoplasma gondii association.  相似文献   

3.
The existence of consistent individual differences in behavioral strategies ("personalities" or coping styles) has been reported in several animal species. Recent work in great tits has shown that such traits are heritable and exhibit significant genetic variation. Free-living birds respond to environmental stresses by up-regulating corticosterone production. Behavior during mild stress can occur in accordance to two types of coping styles, i.e. active and passive. Using artificially selected lines of zebra finches that vary in the amount of corticosterone produced in response to a manual restraint stressor we ran three "personality" experiments. We show that birds in the different corticosterone lines differ in their exploratory and risk-taking behaviors. There was an increase in exploratory behavior as corticosterone titre increased but only in the low corticosterone line. Birds in high corticosterone line showed greater risk-taking behavior than birds in the other lines. Thus, in general, higher levels of circulating corticosterone following a mild stress result in greater exploratory behavior and greater risk taking. This study shows that lines of animals selected for endocrine hormonal responses differ in their "coping" styles or "personalities".  相似文献   

4.
The purpose of this study is to investigate (1) the induction of epigenetic effects in the crustacean Daphnia magna using DNA methylation as an epigenetic mark and (2) the potential stable transfer of such an epigenetic effect to non-exposed subsequent generations. Daphnids were exposed to chemical substances known to affect DNA methylation in mammals: vinclozolin, 5-azacytidine, 2′-deoxy-5-azacytidine, genistein and biochanin A. Effects on overall DNA cytosine methylation, body length and reproduction were evaluated in 21 day experiments. Using a multi-generational experimental design these endpoints were also evaluated in the F1 and F2 generation of both exposed and non-exposed offspring from F0 daphnids exposed to 5-azacytidine, genistein or vinclozolin. A reduction in DNA methylation was consistently observed in daphnids exposed to vinclozolin and 5-azacytidine. Only in organisms exposed to 5-azacytidine was this effect transferred to the two subsequent non-exposed generations. A concurrent reduction in body length at day 7 was observed in these treatments. For the first time, exposure to environmental chemicals was shown to affect DNA methylation in the parental generation of D. magna. We also demonstrated a transgenerational alteration in an epigenetic system in D. magna, which indicates the possibility of transgenerational inheritance of environment-induced epigenetic changes in non-exposed subsequent generations.  相似文献   

5.
Somatic cells from a first-generation red fluorescence protein transgenic cat (first RFP TG cat) were used to produce a recloned RFP transgenic cat (Re-RFP TG cat) (Felis catus) that systemically expressed RFP. A total of 281 RFP cloned embryos were transferred into 13 surrogate mothers (mean = 21 ± 7.7 embryos/recipient). One surrogate cat was diagnosed pregnant (7.7%) and delivered one live kitten. The presence of the RFP gene in the mRNA and genomic DNA of the Re-RFP TG cat was confirmed by polymerase chain reaction analyses, and red fluorescence was detected in its internal organs and placental tissue samples. Analysis of nine feline-specific microsatellite loci confirmed that the Re-RFP TG cat was genetically identical to the donor cat. To test whether results such as normality of offspring and a low cloning success were due to epigenetic modifications, global methylation of placenta from the two first cloned RFP TG cats (77.08% and 82.29%) and the Re-RFP TG cat (76.38%) were compared by bisulfite mutagenesis sequencing analysis. In conclusion, although cloning efficiency was low, we demonstrated the successful use of a cloned first RFP TG cat as a donor cat to produce a Re-RFP TG cat. These results may facilitate future developments in biomedical models for human therapeutic applications.  相似文献   

6.
The influence of progesterone in the brain and on the behavior of females is fairly well understood. However, less is known about the effect of progesterone in the male system. In male rats, receptors for progesterone are present in virtually all vasopressin (AVP) immunoreactive cells in the bed nucleus of the stria terminalis (BST) and the medial amygdala (MeA). This colocalization functions to regulate AVP expression, as progesterone and/or progestin receptors (PR)s suppress AVP expression in these same extrahypothalamic regions in the brain. These data suggest that progesterone may influence AVP-dependent behavior. While AVP is implicated in numerous behavioral and physiological functions in rodents, AVP appears essential for social recognition of conspecifics. Therefore, we examined the effects of progesterone on social recognition. We report that progesterone plays an important role in modulating social recognition in the male brain, as progesterone treatment leads to a significant impairment of social recognition in male rats. Moreover, progesterone appears to act on PRs to impair social recognition, as progesterone impairment of social recognition is blocked by a PR antagonist, RU-486. Social recognition is also impaired by a specific progestin agonist, R5020. Interestingly, we show that progesterone does not interfere with either general memory or olfactory processes, suggesting that progesterone seems critically important to social recognition memory. These data provide strong evidence that physiological levels of progesterone can have an important impact on social behavior in male rats.  相似文献   

7.
Previous studies have examined testosterone's role in regulating the processing of facial displays of emotions (FDEs). However, the reciprocal process – the influence of FDEs, an evolutionarily ancient and potent class of social signals, on the secretion of testosterone – has not yet been studied. To address this gap, we examined the effects of emotional content and sex of facial stimuli in modulating endogenous testosterone fluctuations, as well as sex differences in the endocrine responses to faces. One hundred and sixty-four young healthy men and women were exposed, in a between-subjects design, to happy or angry same-sex or opposite-sex facial expressions. Results showed that in both men (n = 85) and women (n = 79), extended exposure to faces of the opposite sex, regardless of their apparent emotional content, was accompanied by an accumulation in salivary testosterone when compared to exposure to faces of the same sex. Furthermore, testosterone change in women exposed to angry expressions was greater than testosterone change in women exposed to happy expressions. These results add emotional facial stimuli to the collection of social signals that modulate endocrine status, and are discussed with regard to the evolutionary roles of testosterone.  相似文献   

8.
A single exposure to a cat or cat odors has been reported by some groups to induce contextual and auditory fear conditioning and long-lasting changes in anxiety-like behaviour, but there is no evidence for parallel changes in biological stress markers. In the present study we demonstrated in male rats that exposure to a novel environment containing a cloth impregnated with cat fur odor resulted in avoidance of the odor, lower levels of activity and higher pituitary-adrenal (PA) response as compared to those exposed to the novel environment containing a clean cloth, suggesting increased levels of stress in the former animals. When re-exposed 9 days later to the same environment with a clean cloth, previously cat fur exposed rats again showed avoidance of the cloth area and lower levels of activity, suggesting development of contextual fear conditioning, which again was associated with a higher PA activation. In contrast, unaltered both anxiety-like behaviour and PA responsiveness to an elevated plus-maze were found 7 days after cat odor exposure. It is concluded that: (i) PA activation is able to reflect both the stressful properties of cat fur odor and odor-induced contextual fear conditioning; (ii) development of cat odor-induced contextual fear conditioning is independent of the induction of long-lasting changes in anxiety-like behaviour; and (iii) greater PA activation during exposure to the odor context is not explained by non-specific sensitization of the PA axis caused by previous exposure to cat fur odor.  相似文献   

9.
Previous data have consistently demonstrated an inhibitory effect of androgens on stress-induced hypothalamic-pituitary-adrenal (HPA) responses. Several brain regions may influence androgen-mediated inhibition of the HPA axis, including the medial preoptic area. To test the role of the medial preoptic nucleus (MPN) specifically, we examined in high- and low-testosterone-replaced gonadectomized rats bearing discrete bilateral lesions of the MPN basal and stress-induced indexes of HPA function, and the relative levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA in the amygdala. High testosterone replacement decreased plasma adrenocorticotropin hormone (ACTH) and paraventricular nucleus (PVN) Fos responses to restraint exposure in sham- but not in MPN-lesioned animals. AVP-, but not CRH-immunoreactivity staining in the external zone of the median eminence was increased by testosterone in sham animals, and MPN lesions blocked this increment in AVP. A similar interaction between MPN lesions and testosterone occurred on AVP mRNA levels in the medial nucleus of the amygdala. These findings support an involvement of MPN projections in mediating the AVP response to testosterone in both the medial parvocellular PVN and medial amygdala. We conclude that the MPN forms part of an integral circuit that mediates the central effects of gonadal status on neuroendocrine and central stress responses.  相似文献   

10.
Aberrant DNA methylation is induced at specific promoter CpG islands (CGIs) in contrast with mutations. The specificity is influenced by genome architecture and epigenetic factors, but their relationship is still unknown. In this study, we isolated promoter CGIs susceptible and resistant to aberrant methylation induction during prostate and breast carcinogenesis. The effect of genome architecture was more evident for promoter CGIs susceptible in both of the two tissues than for promoter CGIs susceptible only in one tissue. Multivariate analysis of promoter CGIs with tissue-nonspecific susceptibility showed that genome architecture, namely a remote location from SINE (OR = 5.98; 95% CI = 2.33-15.34) and from LINE (OR = 2.08; 95% CI = 1.03-4.21), was associated with increased susceptibility, independent of epigenetic factors such as the presence of RNA polymerase II (OR = 0.09; 95% CI = 0.02-0.48) and H3K27me3 (OR = 3.28; 95% CI = 1.17-9.21). These results showed that methylation susceptibility of promoter CGIs is determined both by genome architecture and epigenetic factors, independently.  相似文献   

11.
Although behavioral and endocrine consequences of acute exposure to stressors have been extensively studied, little is known about how simultaneous exposure to two different stressors interacts to induce short- and long-term effects. In the present experiment we studied this interaction in adult male rats exposed to cat fur odor (impregnated cloth) or immobilization on boards either separately or simultaneously. We reasoned that exposure to the odor of a potential predator while immobilized, may potentiate its negative consequences as compared to exposure to only one of the stressors. Exposure to cat odor elicited the expected reduction of activity and avoidance of the area where the impregnated cloth was located. The endocrine response (plasma levels of ACTH and corticosterone, as a measure of the hypothalamic-pituitary-adrenal axis, HPA) was markedly greater after immobilization than after cat fur odor and no additive effects were found by simultaneous exposure to both stressors. Cat odor, but not immobilization, increased anxiety-like behavior as evaluated in the elevated plus-maze 7 days after the stressors, with no evidence of enhanced HPA activation. In addition, cat odor exposure resulted in long-lasting (8 days later) fear conditioning to the box containing a clean cloth, which was reflected by hypoactivity, avoidance of the cloth area and enhanced HPA activation. All these effects were similarly observed in rats exposed simultaneously to cat odor and immobilization. In rats only exposed to immobilization, only some weak behavioral signs of fear conditioning were found, but HPA activation in response to the context paired to immobilization was enhanced to the same extent as in cat odor-exposed animals, supporting a certain degree of endocrine conditioning. The present results did not reveal important behavioral interactions between the two stressors when animals experienced both simultaneously, whereas some interactions were found regarding HPA activation. Theoretical implications are discussed.  相似文献   

12.
We previously reported that methylmercury (MeHg) exposure is associated with DNA hypomethylation in the brain stem of male polar bears. Here, we conveniently use archived tissues obtained from controlled laboratory exposure studies to look for evidence that MeHg can disrupt DNA methylation across taxa. Brain (cerebrum) tissues from MeHg-exposed mink (Neovison vison), chicken (Gallus gallus) and yellow perch (Perca flavescens) were analyzed for total Hg levels and global DNA methylation. Tissues from chicken and mink, but not perch, were also analyzed for DNA methyltransferase (DNMT) activity. In mink we observed significant reductions in global DNA methylation in an environmentally-relevant dietary exposure group (1 ppm MeHg), but not in a higher group (2 ppm MeHg). DNMT activity was significantly reduced in all treatment groups. In chicken or yellow perch, no statistically significant effects of MeHg were observed. Dose-dependent trends were observed in the chicken data but the direction of the change was not consistent between the two endpoints. Our results suggest that MeHg can be epigenetically active in that it has the capacity to affect DNA methylation in mammals. The variability in results across species may suggest inter-taxa differences in epigenetic responses to MeHg, or may be related to differences among the exposure scenarios used as animals were exposed to MeHg through different routes (dietary, egg injection), for different periods of time (19–89 days) and at different life stages (embryonic, juvenile, adult).  相似文献   

13.
The current study was conducted to elucidate the effect of genetic variations in one-carbon metabolism on the epigenetic regulation of major histocompatibility complex II transactivator (MHC2TA), reduced folate carrier 1 (RFC1/SLC19A1) and human leukocyte antigen (HLA)-DR in systemic lupus erythematosus (SLE). PCR-RFLP/AFLP, bisulfite-sequencing and real-time PCR approaches were used for genetic, epigenetic and expression analysis respectively. SLE cases exhibited elevated plasma homocysteine levels compared to healthy controls (24.93 ± 1.3 vs. 11.67 ± 0.48 μmol/l), while plasma folate levels showed no association (7.10 ± 2.49 vs. 7.64 ± 2.09 ng/ml). The RFC1 80G>A polymorphism showed 1.32-fold risk (95% CI: 1.02–1.72) for SLE, while glutamate carboxypeptidase II (GCPII) 1561C>T showed reduced risk (OR: 0.47, 95% CI: 0.24–0.90). The expression of RFC1 (0.37 ± 0.09 vs. 0.60 ± 0.17) and HLA-DR (0.68 ± 0.17 vs. 0.98 ± 0.02) was down regulated in the SLE cases. The hypermethylation of RFC1 as observed in the current study may contribute for its down regulation. Plasma folate and thymidylate synthase (TYMS) 5′-UTR 28 bp tandem repeat showed an inverse association with methylation of RFC1 and MHC2TA. SLE cases with hypocomplementemia showed hypermethylation of RFC1, hypomethylation/up regulation of MHC2TA and down regulation of HLA-DR. The hypermethylation of MHC2TA and down regulation of RFC1, MHC2TA and HLA-DR were observed in anti-cardiolipin antibody positive SLE cases. The up regulation of RFC1 and HLA-DR was observed in anti-dsDNA antibody positive SLE cases. The hypomethylation/upregulation of RFC1 and MHC2TA was observed in anti-RNP antibody positive cases. To conclude, one-carbon genetic variants influence epigenetic of MHC2TA and RFC1, thus contributing to phenotypic heterogeneity of SLE.  相似文献   

14.
Exposure to excess glucocorticoids (GCs) during embryonic development influences offspring phenotypes and behaviors and induces epigenetic modifications of the genes in the hypothalamic–pituitary–adrenal (HPA) axis and in the serotonergic system in mammals. Whether prenatal corticosterone (CORT) exposure causes similar effects in avian species is less clear. In this study, we injected low (0.2 μg) and high (1 μg) doses of CORT into developing embryos on day 11 of incubation (E11) and tested the changes in aggressive behavior and hypothalamic gene expression on posthatch chickens of different ages. In ovo administration of high dose CORT significantly suppressed the growth rate from 3 weeks of age and increased the frequency of aggressive behaviors, and the dosage was associated with elevated plasma CORT concentrations and significantly downregulated hypothalamic expression of arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH). The hypothalamic content of glucocorticoid receptor (GR) protein was significantly decreased in the high dose group (p < 0.05), whereas no changes were observed for GR mRNA. High dose CORT exposure significantly increased platelet serotonin (5-HT) uptake, decreased whole blood 5-HT concentration (p < 0.05), downregulated hypothalamic tryptophan hydroxylase 1 (TPH1) mRNA and upregulated 5-HT receptor 1A (5-HTR1A) and monoamine oxidase A (MAO-A) mRNA, but not monoamine oxidase B (MAO-B). High dose CORT also significantly increased DNA methylation of the hypothalamic GR and CRH gene promoters (p < 0.05). Our findings suggest that embryonic exposure to CORT programs aggressive behavior in the chicken through alterations of the HPA axis and the serotonergic system, which may involve modifications in DNA methylation.  相似文献   

15.

Aims

Acute ethanol intoxication (AEI) attenuates the arginine vasopressin (AVP) response to hemorrhage leading to impaired hemodynamic counter-regulation and accentuated hemodynamic stability. Previously we identified that the ethanol-induced impairment of circulating AVP concentrations in response to hemorrhage was the result of augmented central nitric oxide (NO) inhibition. The aim of the current study was to examine the mechanisms underlying ethanol-induced up-regulation of paraventricular nucleus (PVN) NO concentration. Angiotensin (ANG) (1-7) is an important mediator of NO production through activation of the Mas receptor. We hypothesized that Mas receptor inhibition would decrease central NO concentration and thus restore the rise in circulating AVP levels during hemorrhagic shock in AEI rats.

Main methods

Conscious male Sprague–Dawley rats (300–325 g) received a 15 h intra-gastric infusion of ethanol (2.5 g/kg + 300 mg/kg/h) or dextrose prior to a fixed-pressure (~ 40 mm Hg) 60 min hemorrhage. The Mas receptor antagonist A-779 was injected through an intracerebroventricular (ICV) cannula 15 min prior to hemorrhage.

Key findings

PVN NOS activity and NO were significantly higher in AEI compared to DEX-treated controls at the completion of hemorrhage. ICV A-779 administration decreased NOS activity and NO concentration, partially restoring the rise in circulating AVP level at completion of hemorrhage in AEI rats.

Significance

These results suggest that Mas receptor activation contributes to the NO-mediated inhibitory tone of AVP release in the ethanol-intoxicated hemorrhaged host.  相似文献   

16.
Environmental compounds are known to promote epigenetic transgenerational inheritance of adult onset disease in subsequent generations (F1–F3) following ancestral exposure during fetal gonadal sex determination. The current study was designed to determine if a mixture of plastic derived endocrine disruptor compounds bisphenol-A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) at two different doses promoted epigenetic transgenerational inheritance of adult onset disease and associated DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to either the “plastics” or “lower dose plastics” mixture during embryonic days 8 to 14 of gonadal sex determination and the incidence of adult onset disease was evaluated in F1 and F3 generation rats. There were significant increases in the incidence of total disease/abnormalities in F1 and F3 generation male and female animals from plastics lineages. Pubertal abnormalities, testis disease, obesity, and ovarian disease (primary ovarian insufficiency and polycystic ovaries) were increased in the F3 generation animals. Kidney and prostate disease were only observed in the direct fetally exposed F1 generation plastic lineage animals. Analysis of the plastics lineage F3 generation sperm epigenome previously identified 197 differential DNA methylation regions (DMR) in gene promoters, termed epimutations. A number of these transgenerational DMR form a unique direct connection gene network and have previously been shown to correlate with the pathologies identified. Observations demonstrate that a mixture of plastic derived compounds, BPA and phthalates, can promote epigenetic transgenerational inheritance of adult onset disease. The sperm DMR provide potential epigenetic biomarkers for transgenerational disease and/or ancestral environmental exposures.  相似文献   

17.
Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors re-programs expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16-17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence.  相似文献   

18.
Interaction of basal and central nuclear neurons of amygdala was studied by plotting histograms of crosscorrelation in passive and active rabbits exposed to emotionally significant stimuli. The behavior of animals was studied in the open field, light-dark test and during presentation of emotionally significant stimuli. Rabbits of different typological groups applied a certain behavioral strategy in a variety of behavioral tests. Intergroup differences were revealed in the interaction of neighboring cells of amygdala. Passive rabbits (as comparied to active rabbits) demonstrated more excitatory connections and less inhibitory connections with the latency from 50 to 150 ms. Interactions with the delta1-range and theta2-range frequencies in passive animals were more rarely observed. The asymmetry of the interhemispheric neuronal interaction in amygdala with the right dominance was revealed in passive but not active animals. The results testify that amygdala is involved in the choice of behavioral strategy, and the level of its activation is higher in passive animals.  相似文献   

19.
Young animals respond to threatening stimuli in an age-specific way. Their endocrine and behavioral responses reflect the potential threat of the situation at a given age. The aim of the present study was to determine whether corticotropin-releasing factor (CRF) is involved in the endocrine and behavioral responses to threat and their developmental changes in young rats. Preweaning 14-day-old and postweaning 26-day-old rats were exposed to two age-specific threats, cat odor and an adult male rat. The acute behavioral response was determined during exposure. After exposure, the time courses of the corticosterone response and of CRF expression in the paraventricular nucleus of the hypothalamus (PVN) and in extrahypothalamic areas were assessed. Preweaning rats became immobile when exposed to cat odor or the male rat, whereas postweaning rats became immobile to cat odor only. Male exposure increased serum corticosterone levels in 14-day-old rats, but cat odor failed to increase levels at either age. Exposure induced elevation of CRF mRNA levels in the PVN that paralleled changes in corticosterone levels. CRF may thus play a role in endocrine regulation and its developmental changes during early life. Neither cat odor nor the adult male altered CRF mRNA levels in the bed nucleus of the stria terminalis (BNST) or the amygdala, but both stimuli increased levels in the hippocampus. Hippocampal CRF mRNA expression levels did not parallel cat odor or male-induced immobility, indicating that CRF is not involved in this response in young rats but may be involved in aspects of learning and memory.  相似文献   

20.
Predation is a strong selective force, and prey species may show specific adaptations that allow recognition, avoidance, and defense against predators. Facing a situation of predatory risk, anxiety constitutes a reaction of adaptive value, allowing to evaluate the potential risk of this encounter as well as to generate a physiological and behavioral response. Previous studies in the subterranean rodent Ctenomys talarum revealed that exposure to predator odors (urine or fur) generates an anxiety state and induces behavioral changes. However, no differences between the responses generated by both odor sources were observed, although fur odors may indicate a higher level of predatory immanence. Therefore, the aim of this study was to evaluate the behavioral and physiological responses of C. talarum to different intensities of predator odors (urine and fur) and to the repeated exposition to the same odorous stimulus. When comparing the highest behavioral effects elicited by both predatory odors on C. talarum, our study supports the assumption that fur odors are more anxiogenic than urine, while the former provoked significant changes in the distance traveled, the number of arm entries and time in transparent arms in the elevated plus maze; cat urine only caused slight changes on those behavioral parameters. Furthermore, we also found that the intensity of natural predator odor presented to tuco‐tucos has a role on the appearance of defensive behaviors, although an amount‐dependent relationship between predator odor and anxiety levels was not observed. Finally, while individuals exposed for 1 day to fur odor displayed an evident anxiety state, those exposed repeatedly for 5 consecutive days did not differ with the control group in their behavioral response, indicating a clear habituation to the predatory cue. In our intensity and habituation experiments, we did not find differences in the measured physiological parameters among control individuals, exposed to different cues intensity (urine and fur odor) and exposed only once or for 5 days to fur odor. These results provide valuable evidence that the types of predatory odor, along with the frequency of exposition, are important determinants of the appearance, strength, and extinction of defensive behaviors in the subterranean rodent C. talarum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号