首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarizes the current research on human exo-alpha-sialidase (sialidase, neuraminidase). Where appropriate, the properties of viral, bacterial, and human sialidases have been compared. Sialic acids are implicated in diverse physiological processes. Sialidases, as enzymes acting upon sialic acids, assume importance as well. Sialidases hydrolyze the terminal, non-reducing, sialic acid linkage in glycoproteins, glycolipids, gangliosides, polysaccharides, and synthetic molecules. Therefore, a variety of assays are available to measure sialidase activity. Human sialidase is present in several organs and cells. Its cellular distribution could be cytosolic, lysosomal, or in the membrane. Human sialidase occurs in a high molecular-mass complex with several other proteins, including cathepsin A and beta-galactosidase. Multi-protein complexation is important for the in vivo integrity and catalytic activity of the sialidase. However, multi-protein complexation, the occurrence of isoenzymes, diverse subcellular localization, thermal instability, and membrane association have all contributed to difficulties in purifying and characterizing human sialidases. Human sialidase isoenzymes have recently been cloned and sequenced. Even though crystal structures for the human sialidases are not available, the highly conserved regions of the sialidase from various organisms have facilitated molecular modeling of the human enzyme and raise interesting evolutionary questions. While the molecular mechanisms vary, genetic defects leading to human sialidase deficiency are closely associated with at least two well-known human diseases, namely sialidosis and galactosialidosis. No therapy is currently available for either disease. A thorough investigation of human sialidases is therefore crucial to human health.  相似文献   

2.
Sialidases are glycohydrolytic enzymes present from virus to mammals that remove sialic acid from oligosaccharide chains. Four different sialidase forms are known in vertebrates: the lysosomal NEU1, the cytosolic NEU2 and the membrane-associated NEU3 and NEU4. These enzymes modulate the cell sialic acid content and are involved in several cellular processes and pathological conditions. Molecular defects in NEU1 are responsible for sialidosis, an inherited disease characterized by lysosomal storage disorder and neurodegeneration. The studies on the biology of sialic acids and sialyltransferases, the anabolic counterparts of sialidases, have revealed a complex picture with more than 50 sialic acid variants selectively present in the different branches of the tree of life. The gain/loss of specific sialoconjugates have been proposed as key events in the evolution of deuterostomes and Homo sapiens, as well as in the host-pathogen interactions. To date, less attention has been paid to the evolution of sialidases. Thus we have conducted a survey on the state of the sialidase family in metazoan. Using an in silico approach, we identified and characterized sialidase orthologs from 21 different organisms distributed among the evolutionary tree: Metazoa relative (Monosiga brevicollis), early Deuterostomia, precursor of Chordata and Vertebrata (teleost fishes, amphibians, reptiles, avians and early and recent mammals). We were able to reconstruct the evolution of the sialidase protein family from the ancestral sialidase NEU1 and identify a new form of the enzyme, NEU5, representing an intermediate step in the evolution leading to the modern NEU3, NEU4 and NEU2. Our study provides new insights on the mechanisms that shaped the substrate specificity and other peculiar properties of the modern mammalian sialidases. Moreover, we further confirm findings on the catalytic residues and identified enzyme loop portions that behave as rapidly diverging regions and may be involved in the evolution of specific properties of sialidases.  相似文献   

3.
Clostridium perfringens causes histotoxic infections and diseases originating in animal or human intestines. A prolific toxin producer, this bacterium also produces numerous enzymes, including sialidases, that may facilitate infection. C. perfringens type D strain CN3718 carries genes encoding three sialidases, including two large secreted sialidases (named NanI and NanJ) and one small sialidase (named NanH) that has an intracellular location in log-phase cultures but is present in supernatants of death phase cultures. Using isogenic mutants of CN3718 that are capable of expressing only NanJ, NanI, or NanH, the current study characterized the properties and activities of each sialidase. The optimal temperature determined for NanJ or NanH enzymatic activity was 37°C or 43°C, respectively, while NanI activity increased until temperature reached 48°C. NanI activity was also the most resistant against higher temperatures. All three sialidases showed optimal activities at pH 5.5. Compared to NanJ or NanH, NanI contributed most to the sialidase activity in CN3718 culture supernatants, regardless of the substrate sialic acid linkage; NanI also released the most sialic acid from Caco-2 cells. Only NanI activity was enhanced by trypsin pretreatment and then only for substrates with an α-2,3- or α-2,6-sialic acid linkage. NanJ and NanI activities were more sensitive than NanH activity to two sialidase inhibitors (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid and siastatin B). The activities of the three sialidases were affected differently by several metal ions. These results indicated that each C. perfringens sialidase has distinct properties, which may allow these enzymes to play different roles depending upon environmental conditions.  相似文献   

4.
Aberrant glycosylation is a characteristic feature of cancer cells. In particular, altered sialylation is closely associated with malignant properties, including invasiveness and metastatic potential. To elucidate the molecular mechanisms underlying the aberrancy, our studies have focused on mammalian sialidase, which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids. The four types of mammalian sialidase identified to date show altered expression and behave in different manners during carcinogenesis. The present review briefly summarizes results on altered expression of sialidases and their possible roles in cancer progression. These enzymes are indeed factors defining cancer malignancy and thus potential targets for cancer diagnosis and therapy.  相似文献   

5.
Bacterial sialidases represent important colonization or virulence factors. The development of a rational basis for the design of antimicrobials targeted to sialidases requires the knowledge of the exact roles of their conserved amino acids. A recombinant enzyme of the 'small' (43 kDa) sialidase of Clostridium perfringens was used as a model in our study. Several conserved amino acids, identified by alignment of known sialidase sequences, were altered by site-directed mutagenesis. All recombinant enzymes were affinity-purified and the enzymatic characteristics were determined. Among the mutated enzymes with modifications in the environment of the 4-hydroxyl group of bound sialic acids, D54N and D54E exhibited minor changes in substrate binding. However, a reduced activity and changes in their pH curves indicate the importance of a charged group at this area. R56K, which is supposed to bind directly to sialic acids as in the homologous Salmonella typhimurium sialidase, showed a 2500-fold reduced activity. The amino acids Asp-62 and Asp-100 are probably involved in catalysis, indicated by reduced activities and altered temperature and pH curves of mutant enzymes. Exchanging Glu-230 with threonine or aspartic acid led to dramatic decreases in activity. This residue and Y347 are supposed to be crucial for providing a suitable environment for catalysis. However, unaltered pH curves of mutant sialidases exclude their direct involvement in protonation or deprotonation events. These results indicate that the interactions with the substrates vary in different sialidases and that they might be more complex than suggested by mere static X-ray structures.  相似文献   

6.
A gene encoding a putative sialidase was identified in the genome of the opportunistic fungal pathogen, Aspergillus fumigatus. Computational analysis showed that this protein has Asp box and FRIP domains, it was predicted to have an extracellular localization, and a mass of 42 kDa, all of which are characteristics of sialidases. Structural modeling predicted a canonical 6-bladed β-propeller structure with the model’s highly conserved catalytic residues aligning well with those of an experimentally determined sialidase structure. The gene encoding the putative Af sialidase was cloned and expressed in Escherichia coli. Enzymatic characterization found that the enzyme was able to cleave the synthetic sialic acid substrate, 4-methylumbelliferyl α-D-N-acetylneuraminic acid (MUN), and had a pH optimum of 3.5. Further kinetic characterization using 4-methylumbelliferyl α-D-N-acetylneuraminylgalactopyranoside revealed that Af sialidase preferred α2-3-linked sialic acids over the α2-6 isomers. No trans-sialidase activity was detected. qPCR studies showed that exposure to MEM plus human serum induced expression. Purified Af sialidase released sialic acid from diverse substrates such as mucin, fetuin, epithelial cell glycans and colominic acid, though A. fumigatus was unable to use either sialic acid or colominic acid as a sole source of carbon. Phylogenetic analysis revealed that the fungal sialidases were more closely related to those of bacteria than to sialidases from other eukaryotes.  相似文献   

7.
Sialidase and malignancy: a minireview   总被引:6,自引:0,他引:6  
Aberrant sialylation in cancer cells is thought to be a characteristic feature associated with malignant properties including invasiveness and metastatic potential. Sialidase which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids, has been suggested to play important roles in many biological processes through regulation of cellular sialic acid contents. The altered expression of sialidase observed in cancer would, therefore, suggest its involvement in the malignant process. In mammalian cells, three types of sialidase cloned and characterized to date were found to behave in different manners during carcinogenesis. Recent progress in molecular cloning of these sialidases has facilitated elucidation of the molecular mechanisms and significance of these alterations. Herein we briefly describe our own studies on sialidase changes associated with malignant transformation and summarize the topic from both a retrospective and a prospective viewpoint. Sialidases are indeed closely related to malignancy and are thus potential targets for cancer diagnosis and therapy.  相似文献   

8.
9.
Herein we report the synthesis of N-acetyl neuraminic acid derivatives as 4-methylumbelliferyl glycosides and their use in fluorometrically quantifying human and bacterial sialidase activity and substrate specificities. We found that sialidases in the human promyelocytic leukemic cell line HL60 were able to cleave sialic acid substrates with fluorinated C-5 modifications, in some cases to a greater degree than the natural N-acetyl functionality. Human sialidases isoforms were also able to cleave unnatural substrates with bulky and hydrophobic C-5 modifications. In contrast, we found that a bacterial sialidase isolated from Clostridium perfringens to be less tolerant of sialic acid derivatization at this position, with virtually no cleavage of these glycosides observed. From our results, we conclude that human sialidase activity is a significant factor in sialic acid metabolic glycoengineering efforts utilizing unnatural sialic acid derivatives. Our fluorogenic probes have enabled further understanding of the activities and substrate specificities of human sialidases in a cellular context.  相似文献   

10.
Aberrant sialylation in cancer cells is thought to be a characteristic feature associated with malignant properties including invasiveness and metastatic potential. Sialidase which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids, has been suggested to play important roles in many biological processes through regulation of cellular sialic acid contents. The altered expression of sialidase observed in cancer would, therefore, suggest its involvement in the malignant process. In mammalian cells, three types of sialidase cloned and characterized to date were found to behave in different manners during carcinogenesis. Recent progress in molecular cloning of these sialidases has facilitated elucidation of the molecular mechanisms and significance of these alterations. Herein we briefly describe our own studies on sialidase changes associated with malignant transformation and summarize the topic from both a retrospective and a prospective viewpoint. Sialidases are indeed closely related to malignancy and are thus potential targets for cancer diagnosis and therapy. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
When compared to bacterial or viral sialidases, eukaryotic sialidases are expressed at lower levels and frequently show poor specific activities. The identification and characterization of sialidases from eukaryotes have been slowed down due to the limited sensitivity of available sialidase substrates. Therefore, we chemically synthesized a fluorogenic compound, 4-trifluoromethylumbelliferyl-α- -N-acetylneuraminic acid (CF3MU-Neu5Ac), and tested its use as a substrate for eight different sialidases, including enzymes from viral, bacterial, and eukaryotic sources. Kinetic analysis revealed CF3MU-Neu5Ac to be a very sensitive sialidase substrate. Furthermore, this substance proves to be perfectly suitable for thein vivoexamination of sialidases and for the detection of recombinant sialidase by means of expression cloning.  相似文献   

12.
Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently identified human cytosolic sialidase. Here we report the first high resolution x-ray structures of mammalian sialidase, human Neu2, in its apo form and in complex with an inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). The structure shows the canonical six-blade beta-propeller observed in viral and bacterial sialidases with its active site in a shallow crevice. In the complex structure, the inhibitor lies in the catalytic crevice surrounded by ten amino acids. In particular, the arginine triad, conserved among sialidases, aids in the proper positioning of the carboxylate group of DANA within the active site region. The tyrosine residue, Tyr(334), conserved among mammalian and bacterial sialidases as well as in viral neuraminidases, facilitates the enzymatic reaction by stabilizing a putative carbonium ion in the transition state. The loops containing Glu(111) and the catalytic aspartate Asp(46) are disordered in the apo form but upon binding of DANA become ordered to adopt two short alpha-helices to cover the inhibitor, illustrating the dynamic nature of substrate recognition. The N-acetyl and glycerol moieties of DANA are recognized by Neu2 residues not shared by bacterial sialidases and viral neuraminidases, which can be regarded as a key structural difference for potential drug design against bacteria, influenza, and other viruses.  相似文献   

13.
Sialidases are hydrolytic enzymes present from virus to highereukaryotes, catalyzing the removal of sialic acid from glycoconjugates.Some protozoa Trypanosomatidae secrete high levels of sialidaseinto the medium. We have now purified the secreted sialidasefrom Trypanosoma rangeli Its N-terminal sequence reveals 100%identity with the corresponding region of the trans-sialidasefrom T.cruzi Trans-sialidase, although homologous to viral andbacterial sialidases, displays a novel sialyltransferase activityand is involved in host cell invasion. Several homologous trans-sialidase-likegenes were cloned from genomic DNA of T.rangeli, and groupedin three subfamilies. Active siali-dase-encoding genes werefound in one of them. The re-combinant sialidase shows similarproperties to those of the native enzyme, including undetectabletrans-sialidase activity. Nevertheless, it has an overall identityof 68.9% with the catalytic domain of T.cruzi trans-sialidase,increasing to 86.7% admitting conservative substitutions. Onlythree other eukaryotic sialidases have been previously cloned,none of them showing significant homology to trans-sialidase.The isolation of a highly similar sialidase is relevant to furtheridentify the molecular determinants allowing trans-sialidaseactivity. As a first approach, chimeric constructs between sialidaseand trans-sialidase were generated, one of them rendering asialidase with three times lower Km than the natural enzyme. eukaryotic sialidase gene family glycosidase parasite sialic acid  相似文献   

14.
The stereochemical course of enzymatic hydrolysis by the solublesialidase from Chinese hamster ovary cells, expressed as a recombinantprotein in insect Sf9 cells, was determined using proton nuclearmagnetic resonance spectroscopy. 4-Methyl umbelliferyl-N-acetylneuraminic acid was employed as substrate, and the stereoselectivityof the enzyme catalysis was ascertained by monitoring the H3axial and equatorial protons of the sialic acid product overthe reaction course. At both high (3 U) and low concentrations(1 U) of the enzyme, the alpha anomer of the sialic acid wasclearly observed as the initial reaction product. The correspondingbeta anomer of sialic acid appeared much later in the reaction,arising from mutarotation of the alpha anomer. Similar studieswere also carried out using the Salmonella typhimurium LT 2sialidase, a protein of similar size and substrate specificity.Both enzymes apparently cleave the alpha linked sialoside substratewith retention of configuration. Based on the observations ofa wide variety of other glycohydrolytic enzymes that have showna strong correlation of the stereoselectivity of catalysis withactive site topology (Gebler et al, J. Biol. Chem. 267, 12559–12561,1992), the results obtained here suggest that the microbialand mammalian sialidases have a homologous active site architectureeven though the molecules do not share significant primary sequencesimilarities. sialidase NMR enzyme mechanism Chinese hamster  相似文献   

15.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

16.
Trypanosoma cruzi expresses a trans-sialidase on its surface, which catalyzes the transfer of sialic acid from mammalian host glycans to its own surface glycoproteins. It has been proposed that the enzyme consists of three domains prior to a long C-terminal repeating sequence that is not required for enzyme activity. The first of these domains shares significant sequence identity with bacterial sialidases which catalyse the hydrolysis of sialic acid. Here we report the sequence of the N-terminal domains of the TS19y trans-sialidase gene, which was expressed in bacteria with the same specific activity as natural enzyme of T. cruzi. Various deletion mutants of TS19y, without the C-terminal tandem repeat, have been cloned and expressed and their trans-sialidase and sialidase activities measured. These experiments show that all three N-terminal domains are required for full trans-sialidase activity, though only the first is necessary for sialidase activity. Some transferase activity is observed, however, even with the shortest construct comprising the first N-terminal domain. Deletion mutants to probe the role of the N-terminal residues of the first domain suggest that the first 33 residues are also required for trans-sialidase activity, but not for sialidase activity. Molecular modelling of the first N-terminal domain of TS19y based on our structures of bacterial sialidases and site-directed mutations suggests the location of a galactose-binding site within this domain.  相似文献   

17.
Sialidases or neuraminidases are enzymes that catalyze the cleavage of terminal sialic acids from oligosaccharides and glycoconjugates. They play important roles in bacterial and viral infection and have been attractive targets for drug development. Structure-based drug design has led to potent inhibitors against neuraminidases of influenza A viruses that have been used successfully as approved therapeutics. However, selective and effective inhibitors against bacterial and human sialidases are still being actively pursued. Guided by crystal structural analysis, several derivatives of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en or DANA) were designed and synthesized as triazole-linked transition state analogs. Inhibition studies revealed that glycopeptide analog E-(TriazoleNeu5Ac2en)-AKE and compound (TriazoleNeu5Ac2en)-A were selective inhibitors against Vibrio cholerae sialidase, while glycopeptide analog (TriazoleNeu5Ac2en)-AdE selectively inhibited Vibrio cholerae and A. ureafaciens sialidases.  相似文献   

18.
Sialidase (EC 3.2.1.18) catalyzes the release of sialic acid from sialo-oligosaccharides, gangliosides, or sialo-glycoproteins. In this investigation, we cloned a novel cDNA for mouse brain sialidase and expressed the cDNA in COS-7 cells. This 1,699 bp cDNA codes for a 41.6 kDa protein consisting of 372 deduced amino acid residues. In COS-7 cells transiently transfected with the cDNA, a 250-fold increase was observed in specific activity toward 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Similarity searches of the nonredundant GenBank peptide sequence database by the PSI-BLAST program identified rat, hamster, human, and bacterial sialidases homologous to this mouse brain sialidase. Amino acid sequence identities to rat and hamster sialidases (84% and 77%, respectively) suggest that this form of sialidase is conserved in rodents. Sequence identities to human and mouse lysosomal sialidases (30% and 28%, respectively) indicate that the mouse brain sialidase is distinct from the lysosomal enzyme. Mouse brain sialidase has two amino acid sequence motifs common to bacterial sialidases: the 'F/YRIP' motif and the 'Asp-box' motif. The 'F/YRIP' motif is present near the N terminus while two 'Asp-box' motifs are present downstream.  相似文献   

19.
Li Y  Cao H  Yu H  Chen Y  Lau K  Qu J  Thon V  Sugiarto G  Chen X 《Molecular bioSystems》2011,7(4):1060-1072
Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.  相似文献   

20.
Among bacterial, fungal and viral sialidases, the sialidase from Arthrobacter ureafaciens has the unique property of cleaving sialic acids linked to the internal galactose of gangliotetraose. In this study, we examined the ability to cleave the internal sialic acids of GM1 and fucosyl GM1 of sialidases from several bacterial and fungal origins, including Clostridium perfringens and Vibrio cholerae. We found that A. ureafaciens sialidase could liberate the sialic acid of GM1 at the highest rate, and was the only enzyme which could cleave fucosyl GM1 among the sialidases examined.The affinity-purified sialidase derived from the culture medium of A. ureafaciens was comprised of four isoenzymes with different molecular weights and isoelectric points, the isoenzymes that cleaved fucosyl GM1 being L (88 kDa, pI 5.0), M1 (66 kDa, pI 6.2) and M2 (66 kDa, pI 5.5), but not S (52 kDa, pI 6.2) which showed the highest specific activity toward colominic acid among the four isoenzymes. Abbreviations: SA, sialic acid; PBS, phosphate-buffered saline; PVP, polyvinylpyrrolidone; FABMS, fast atom bombardment mass spectrometry; Galint, internal galactose of Gg4Cer; Galext, external galactose of Gg4Cer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号