首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The phospholipase C (PLC) pathway is the major signaling mechanism of photoactivation in invertebrate photoreceptors. Here we report the cloning of a cDNA encoding a 140-kDa retinal PLC that is uniquely expressed in squid photoreceptors. This cDNA encodes a protein with multiple distinct modular domains: PH, X and Y catalytic, and C2 domains, as well as G- and P-box motifs and two GTP/ATP binding motifs. The PLC was stimulated by activated squid Gq alpha but not by squid Gq beta gamma or mammalian beta gamma subunits. The PLC was inhibited by monophosphate, diphosphate and triphosphate nucleotides but not cyclic nucleosides. We also tested the ability of PLC-140 to regulate the GTPase activity of Gq alpha in the rhabdomeric membranes. Depletion of PLC-140 from the rhabdomeric membranes decreased the GTP hydrolysis but not GTP gamma S binding to the membranes. Reconstitution of purified PLC-140 with membranes accelerated Gq alpha GTPase activity by fivefold at a concentration of 2.5 microM. Our data suggest that PLC-140 plays an important role in both the activation and inactivation pathways of invertebrate visual transduction.  相似文献   

2.
Heterotrimeric GTP-binding proteins (G proteins) play an important role in phototransduction. The presence of G-protein subclasses has been reported in photoreceptive membranes, e.g., the Gi subgroup (transducin) in vertebrate rods, and the Gq subgroup in the eyes of the Arthropoda and the Mollusca. We examined the immunoreactivity and distribution of a Gq homologue in the cerebral ocelli of Perinereis brevicirris (Polychaeta, Annelida) using an anti-GqC antibody raised against a conserved sequence at the C-terminal of the alpha-subunit of Gq (Gq-alpha). The anti-GqC antibody labeled a 48-kDa band on the Western blot of proteins from the Perinereis ocelli. The anti-GtC antibody, which is raised against the C-terminal sequence of bovine transducin alpha-subunit (Gt-alpha), did not cross-react to the ocellar proteins of Perinereis. The rhabdomeric layers of the anterior and posterior ocelli were strongly labeled by anti-GqC on light-microscopic immunohistology. Immunoelectron microscopy showed that the Gq molecules were specifically localized in the photoreceptive membrane of the rhabdomeric microvilli. These results suggest that the Gq protein plays a role in the phototransduction of the Perinereis ocelli.  相似文献   

3.
In crayfish photoreceptor cells, Gq-type G-protein plays a central role in the phototransduction pathway, and the translocation of Gqα has been proposed as one of the molecular mechanisms to control photoreceptor sensitivity. We here investigated β subunit of Gq and its localization profiles under various light conditions in the crayfish photoreceptor cells to understand the functional characteristic of visual Gq in the phototransduction pathway. An immunoprecipitation experiment was performed using an anti-Gqα antibody and a thiol-cleavable crosslinker. A 39 kDa protein was co-immunoprecipitated with Gqα, but not by irradiation, in the presence of GTPγS. The partial amino acid sequence of the 39 kDa protein was similar to Gβe in Drosophila photoreceptors, indicating that the crayfish Gβ which combines with Gqα is a Gβe homologue. Immunohistochemical and immunoblot analyses revealed that the amount of the Gβ decreased in the rhabdomeric membranes and increased in the cytoplasm in the light, compared with that in the dark. The profile of the translocation was similar to that reported for Gqα. Since both α and βγ subunits are necessary for G-proteins to be activated by rhodopsin in the rhabdom, the light-modulated translocation of a Gβe homologue possibly controls the amount of Gq which can be activated by light-stimulated rhodopsin. Accepted: 27 June 1998  相似文献   

4.
Photoactivation of invertebrate rhodopsin activates a GTP-binding protein, Gq, which in turn activates a phospholipase C (PLC) enzyme. Gqalpha is a membrane-associated protein that is progressively released from the membrane by washing with buffers containing increasing concentrations of beta-mercaptoethanol (beta-ME). Isolated, soluble Gqalpha showed a decreased ability to be activated by rhodopsin but was more active in stimulating PLC when compared with the membrane-associated form of Gqalpha. The calcium-activated protease, calpain, selectively cleaved the soluble but not the membrane-bound form of Gqalpha. Calpain cleaved a small peptide from the amino-terminus of Gqalpha reducing the ability of the G-protein to bind GTP. The uncoupling of Gqalpha from rhodopsin and subsequent calcium-dependent proteolysis to further inactivate the G-protein may therefore be a regulatory mechanism of light adaptation in rhabdomeric photoreceptors.  相似文献   

5.
Rhodopsin (P, lambda max 480 nm) of blowfly photoreceptors R1-6 is converted by light into a thermally stable metarhodopsin (M, lambda max 565 nm). In isolated blowfly rhabdoms photoconversion of P to M affects bacterial toxin-catalyzed ADP-ribosylation of a 41-kDa protein, activates phosphorylation of opsin and induces the binding of a 48-kDa phosphoprotein to the rhabdomeric membrane. ADP-ribosylation of the 41-kDa protein is catalyzed by cholera toxin and is inhibited by P----M conversion. The 41-kDa protein might represent the alpha-subunit of the G-protein, proposed to be part of the phototransduction mechanism [Blumenfeld, A. et al. (1985) Proc. Natl Acad. Sci. USA 82, 7116-7120]. P----M conversion leads to phosphorylation of opsin at multiple binding sites: up to 4 mol phosphate are bound/mol M formed. Dephosphorylation of the phosphate binding sites is induced by photoconversion of M to P. High levels of calcium (2 mM) inhibit phosphorylation of M and increase dephosphorylation of P. Protein patterns obtained by sodium dodecyl sulfate gel electrophoresis of irradiated retina membranes show an increased incorporation of label from [gamma-32P]ATP also into protein bands of 48 kDa, 68 kDa and 200 kDa. Binding studies reveal that in the case of the 48-kDa protein this effect is primarily due to a light-induced binding of the protein to the photoreceptor membrane. The binding of the 48-kDa phosphoprotein is reversible: after M----P conversion the protein becomes extractable by isotonic buffers. These data suggest that in rhabdomeric photoreceptors of invertebrates light-activation of rhodopsin is coupled to an enzyme cascade in a similar way as in the ciliary photoreceptors of vertebrates, although there may be differences, e.g. in the type of G-protein which mediates between the activated state of metarhodopsin and a signal-amplifying enzyme reaction.  相似文献   

6.
7.
K Shaw  J H Exton 《Biochemistry》1992,31(27):6347-6354
Phosphoinositide phospholipase C (PLC) activity extracted from bovine liver plasma membranes with sodium cholate was stimulated by GTP gamma S-activated G alpha q/G alpha 11, whereas the enzyme from liver cytosol was not. The membrane-associated PLC was subjected to chromatography on heparin-Sepharose, Q Sepharose, and S300HR, enabling the isolation of the G-protein stimulated activity and its resolution from PLC-gamma and PLC-delta. Following gel filtration, two proteins of 150 and 140 kDa were found to correspond to the activatable enzyme. These proteins were identified immunologically as members of the PLC-beta family and were completely resolved by chromatography on TSK Phenyl 5PW. The 150-kDa enzyme was markedly responsive to GTP gamma S-activated alpha-subunits of G alpha q/G alpha 11 or to purified Gq/G11 in the presence of GTP gamma S. The response of this PLC was of much greater magnitude than that of the 140-kDa enzyme. The partially purified 150-kDa enzyme showed specificity for PtdIns(4,5)P2 and PtdIns4P as compared to PtdIns and had an absolute dependence upon Ca2+. These characteristics were similar to those of the brain PLC-beta 1. The immunological and biochemical properties of the 150-kDa membrane-associated enzyme are consistent with its being the PLC-beta isozyme that is involved in receptor-G-protein-mediated generation of inositol 1,4,5-triphosphate in liver.  相似文献   

8.
The two fundamental types of photoreceptor cells have evolved unique structures to expand the apical membrane to accommodate the phototransduction machinery, exemplified by the cilia-based outer segment of the vertebrate photoreceptor cell and the microvilli-based rhabdomere of the invertebrate photoreceptor. The morphogenesis of these compartments is integral for photoreceptor cell integrity and function. However, little is known about the elementary cellular and molecular mechanisms required to generate these compartments. Here we investigate whether a conserved cellular mechanism exists to create the phototransduction compartments by examining the functional role of a photoreceptor protein common to both rhabdomeric and ciliated photoreceptor cells, Prominin. First and foremost we demonstrate that the physiological role of Prominin is conserved between rhabdomeric and ciliated photoreceptor cells. Human Prominin1 is not only capable of rescuing the corresponding rhabdomeric Drosophila prominin mutation but also demonstrates a conserved genetic interaction with a second photoreceptor protein Eyes Shut. Furthermore, we demonstrate the Prominin homologs in vertebrate and invertebrate photoreceptors require the same structural features and post-translational modifications for function. Moreover, expression of mutant human Prominin1, associated with autosomal dominant retinal degeneration, in rhabdomeric photoreceptor cells disrupts morphogenesis in ways paralleling retinal degeneration seen in ciliated photoreceptors. Taken together, our results suggest the existence of an ancestral Prominin-directed cellular mechanism to create and model the apical membranes of the two fundamental types of photoreceptor cells into their respective phototransduction compartments.  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号