首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial Cell Swelling by Aldosterone   总被引:7,自引:0,他引:7  
There is accumulating evidence that mineralocorticoids not only act on kidney but also on the cardiovascular system. We investigated the response of human umbilical venous endothelial cells (HUVECs) to aldosterone at a time scale of 20 minutes in absence and presence of the aldosterone antagonist spironolactone or other transport inhibitors. We applied atomic force microscopy (AFM), which measures cell volume and volume shifts between cytosol and cell nucleus. We observed an immediate cell volume increase (about 10%) approximately 1 min after addition of aldosterone (0.1 µmol/l), approaching a maximum (about 18%) 10 min after aldosterone treatment. Cell volume returned to normal 20 min after hormone exposure. Spironolactone (1 µmol/l) or amiloride (1 µmol/l) prevented the late aldosterone-induced volume changes but not the immediate change observed 1 min after hormone exposure. AFM revealed nuclear swelling 5 min after aldosterone addition, followed by nuclear shrinkage 15 min later. The Na+/H+ exchange blocker cariporide (10 µmol/l) was ineffective. We conclude: (i) Aldosterone induces immediate (1 min) swelling independently of plasma membrane Na+ channels and intracellular mineralocorticoid receptors followed by late mineralocorticoid receptor- and Na+-channel-dependent swelling. (ii) Intracellular macromolecule shifts cause the changes in cell volume. (iii) Both amiloride and spironolactone may be useful for medical applications to prevent aldosterone-induced vasculopathies.  相似文献   

2.
The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genetic mutation of the Na+/H+ exchanger isoform 1, N266H, was discovered in a human patient through exome sequencing. We examined the effect of this mutation on expression, targeting and activity of the Na+/H+ exchanger. Mutant N266H protein was expressed in AP-1 cells, which lack their endogenous Na+/H+ exchanger protein. Targeting of the mutant protein to the cell surface was normal and expression levels were only slightly reduced relative to the wild type protein. However, the N266H mutant protein had no detectable Na+/H+ exchanger activity. A histidine residue at this location may disrupt the cation binding site or the pore of the Na+/H+ exchanger protein.  相似文献   

3.
Summary Ehrlich ascites tumor cells undergoing regulatory volume decrease (RVD) exhibit cytoplasmic acidification as measured by an intracellular fluorescent pH indicator. The acidification results in an activation of the Na+/H+ exchanger. The intracellular pH set point for the activation is estimated to be around 7.0. The activation of the Na+/H+ exchanger leads to an incomplete RVD. In support of this conclusion, amiloride and Na+-free medium, known to limit the Na+/H+ exchange, indeed enhance the RVD response. Intracellular acidification and activation of Na+/H+ exchange may be a general response of cells undergoing RVD.  相似文献   

4.
The Na+/H+ exchanger is an integral membrane protein found in the plasma membrane of eukaryotic and prokaryotic cells. In eukaryotes it functions to exchange one proton for a sodium ion. In mammals it removes intracellular protons while in plants and fungal cells the plasma membrane form removes intracellular sodium in exchange for extracellular protons. In this study we used the Na+/H+ exchanger of Schizosaccharomyces pombe (Sod2) as a model system to study amino acids critical for activity of the protein. Twelve mutant forms of the Na+/H+ exchanger were examined for their ability to translocate protons as assessed by a cytosensor microphysiometer. Mutation of the amino acid Histidine 367 resulted in defective proton translocation. The acidic residues Asp145, Asp178, Asp266 and Asp267 were important in the proton translocation activity of the Na+/H+ exchanger. Mutation of amino acids His98, His233 and Asp241 did not significantly impair proton translocation by the Na+/H+ exchanger. These results confirm that polar amino acids are important in proton flux activity of Na+/H+ exchangers.  相似文献   

5.
Summary Suspensions of OK cells (a continuous renal epithelial cell line originating from the opossum kidney) were examined by flow cytometry. Three parameters were evaluated simultaneously; cell integrity as assayed by propidium iodide fluorescence, cell size as measured by time-of-flight, and intracellular pH as measured by fluorescence of 2,7-bis-(2-carboxyethyl)-5,6 carboxyfluorescein (BCECF). The suspension was shown to be composed of both intact singlets and doublets of cells, and no difference was noted in the behavior of these two populations with respect to the resting intracellular pH, or of the response of intracellular BCECF to changes in pH. Evidence suggests that using NH4 prepulses to create an acid load broadens the intracellular pH distribution. The population of OK cells demonstrates a recovery from this acid load which is very homogeneous with respect to its sensitivity to Na+ removal or EIPA (ethylisopropyl-amiloride), suggesting that virtually all cells utilize Na+/H+ exchange for this recovery. The data also suggest heterogeneity in the cellular pH recovery from an acid load with respect to the observed rates of Na+/H+ exchange. Despite this heterogeneity, the Na+/H+ exchanger is observed to focus the resting intracellular pH of the population to approximately pH 7.4–7.5. The response of the population to PTH suggests that the majority of cells respond to the hormone, and that the total Na+/H+ exchange in individual cells is only partially inhibited even in the presence of saturating PTH concentrations.  相似文献   

6.
Amiloride-sensitive, Na+-dependent, DIDS-insensitive cytoplasmic alkalinization is observed after hypertonic challenge in Ehrlich ascites tumor cells. This was assessed using the fluorescent pH-sensitive probe 2′,7′-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). A parallel increase in the amiloride-sensitive unidirectional Na+ influx is also observed. This indicates that hypertonic challenge activates a Na+/H+ exchanger. Activation occurs after several types of hypertonic challenge, is a graded function of the osmotic challenge, and is temperature-dependent. Observations on single cells reveal a considerable variation in the shrinkage-induced changes in cellular pH i , but the overall picture confirms the results from cell suspensions. Shrinkage-induced alkalinization and recovery of cellular pH after an acid load, is strongly reduced in ATP-depleted cells. Furthermore, it is inhibited by chelerythrine and H-7, inhibitors of protein kinase C (PKC). In contrast, Calyculin A, an inhibitor of protein phosphatases PP1 and PP2A, stimulates shrinkage-induced alkalinization. Osmotic activation of the exchanger is unaffected by removal of calcium from the experimental medium, and by buffering of intracellular free calcium with BAPTA. At 25 mm HCO 3, but not in nominally HCO 3-free medium, Na+/H+ exchange contributes significantly to regulatory volume increase in Ehrlich cells. Under isotonic conditions, the Na+/H+ exchanger is activated by ionomycin, an effect which may be secondary to ionomycin-induced cell shrinkage. Received: 2 March 1995/Revised: 29 September 1995  相似文献   

7.
After incubation of lamprey Lampetra fluviatilis erythrocytes in the standard medium for 90–120 min, intracellular Na+ and K+ content remained unchanged (28.7 ± 1.1 and 66.3 ± 1.5 mmol/l cells, respectively, n = 33). The erythrocyte ion content also did not change after treatment of the cells with ion transport inhibitors, Ba2 + and amiloride. Addition of 0.1 mM ouabain to the incubation medium led to a decrease of K+ content by 8.4 ± 1.2 and to an increase of Na+ content by 2.4 ± 0.8 mmol/l/2 h. Similar reciprocal changes in the cellular ion composition were observed after treatment of the erythrocytes by oxidative metabolism inhibitors (rotenone and CCCP—carbonyl cyanide m-chlorophenyl-hydrazone). The metabolic blockers produced more significant ion composition changes in comparison with ouabain. An increase of intracellular Na+ content under effect of CCCP was completely inhibited by amiloride. It can be suggested that inhibition of oxidative metabolism is accompanied by a cell acidification and Na+/H+ exchange activation. Erythrocyte acidification by a K+/H+ ionophore led to a rapid cellular Na+ accumulation, which indicates the presence of a Na+/H+ exchanger with high activity. The K+ ionophore valinomycin produced a relatively small K+ loss from the lamprey erythrocytes to indicate a low anion conductance of the cells. The data obtained indicate an important role of oxidative metabolism in the monovalent ion homeostasis in the lamprey red blood cells.  相似文献   

8.
Na+/H+ exchange is one of the major pathways of ion transport in cells of pro- and eukaryots and plays an important role in intracellular pH and cell volume regulation, in cell division, proliferation, as well as in epithelial transport processes. Since 1989, investigations on the molecular nature of this transporter have revealed six isoforms (NHE1–NHE6) in mammalian tissues. Most works on studies of properties of the Na/H antiporter and regulation of its activity have been carried out on mammalian tissues. This review summarizes results of studies on the Na+/H+ exchange in tissues of lower vertebrates. Of the greatest interest are investigations on the rainbow trout, whose erythrocytes were found to contain a Na+/H+ exchanger activated by catecholamines. This carrier in trout erythrocytes has been cloned and called beta-NHE ( ;NHE). Another exchanger isoform, atNHE, was isolated from the red blood cells of the giant salamander Amphiuma tridactulum. Isoforms of antiporter isolated from oocytes (XL-NHE) and renal cells of the clawed frog Xenopus laevis (XNHE) have also been described.  相似文献   

9.
Nitric oxide plays several roles in cellular physiology, including control of the vascular tone and defence against pathogen infection. Neuronal, inducible and endothelial nitric oxide synthase (NOS) isoforms synthesize nitric oxide. Cells generate acid and base equivalents, whose physiological intracellular concentrations are kept due to membrane transport systems, including Na+/H+ exchangers and Na+/HCO3? transporters, thus maintaining a physiological pH at the intracellular (~7.0) and extracellular (~7.4) medium. In several pathologies, including cancer, cells are exposed to an extracellular acidic microenvironment, and the role for these membrane transport mechanisms in this phenomenon is likely. As altered NOS expression and activity is seen in cancer cells and because this gas promotes a glycolytic phenotype leading to extracellular acidosis in gynaecological cancer cells, a pro‐inflammatory microenvironment increasing inducible NOS expression in this cell type is feasible. However, whether abnormal control of intracellular and extracellular pH by cancer cells regards with their ability to synthesize or respond to nitric oxide is unknown. We, here, discuss a potential link between pH alterations, pH controlling membrane transport systems and NOS function. We propose a potential association between inducible NOS induction and Na+/H+ exchanger expression and activity in human ovary cancer. A potentiation between nitric oxide generation and the maintenance of a low extracellular pH (i.e. acidic) is proposed to establish a sequence of events in ovarian cancer cells, thus preserving a pro‐proliferative acidic tumour extracellular microenvironment. We suggest that pharmacological therapeutic targeting of Na+/H+ exchangers and inducible NOS may have benefits in human epithelial ovarian cancer.  相似文献   

10.
11.
Na+/H+ exchangers are essential for regulation of intracellular proton and sodium concentrations in all living organisms. We examined and experimentally verified a kinetic model for Na+/H+ exchangers, where a single binding site is alternatively occupied by Na+ or one or two H+ ions. The proposed transport mechanism inherently down-regulates Na+/H+ exchangers at extreme pH, preventing excessive cytoplasmic acidification or alkalinization. As an experimental test system we present the first electrophysiological investigation of an electroneutral Na+/H+ exchanger, NhaP1 from Methanocaldococcus jannaschii (MjNhaP1), a close homologue of the medically important eukaryotic NHE Na+/H+ exchangers. The kinetic model describes the experimentally observed substrate dependences of MjNhaP1, and the transport mechanism explains alkaline down-regulation of MjNhaP1. Because this model also accounts for acidic down-regulation of the electrogenic NhaA Na+/H+ exchanger from Escherichia coli (EcNhaA, shown in a previous publication) we conclude that it applies generally to all Na+/H+ exchangers, electrogenic as well as electroneutral, and elegantly explains their pH regulation. Furthermore, the electrophysiological analysis allows insight into the electrostatic structure of the translocation complex in electroneutral and electrogenic Na+/H+ exchangers.  相似文献   

12.
Summary The present study describes a new perfusion technique—based on the use of a routine spectrofluorometer—which enables fluorometric evaluation of polarity, regulation and kinetics of Na+/H+ exchange at the level of an intact monolayer. Na+/ H+ exchange was evaluated in bicarbonate-free solutions in OK (opossum kidney) cells, a renal epithelial cell line. Na+/H+ exchange activity was measured by monitoring changes in intracellular pH (pH i ) after an acid load, using the pH-sensitive dye 27-bis (carboxyethyl) 5–6-carboxy-fluorescein (BCECF). Initial experiments indicated that OK cells grown on a permeable support had access to apical and basolateral perfusion media. They also demonstrate that OK cells express an apical pH i , recovery mechanism, which is Na+ dependent, ethylisopropylamiloride (EIPA) sensitive and regulated by PTH. Compared to resting conditions (pH i =7.68; pH o =7.4) where Na+/H+ exchange is not detectable, transport rate increased as pH i decreased. A positive cooperativity characterized the interaction of internal H+ with the exchanger, and suggests multiple H+ binding sites. In contrast, extracellular [Na+] increased transport with simple Michaelis-Menten kinetics. The apparent affinity of the exchanger for Na+ was 19mM at an intracellular pH of 7.1 and 60mM at an intracellular pH of 6.6. Inhibition of Na+/H+ exchange activity by EIPA was competitive with respect to extracellular [Na+] and theK i was 3.4 M. In conclusion, the technique used in the present study is well suited for determination of mechanisms involved in control of epithelial cell pH i and processes associated with their polarized expression and regulation.  相似文献   

13.
Endothelium-dependent vasoactive substances are known to evoke complex changes in the endothelial membrane potential (MP) and to increase intracellular pH in endothelial cells (EC). In our present study, we investigated the effect of agents able to increase intracellular pH on the MP of intact guinea pig aortic EC, and also the effect of blocking of Na+−H+ exchanger on ATP-induced electrical responses. Intracellular alkalinization was induced either by addition of ammonium chloride (NH4Cl) to the superfusate, or by changing the bath solution saturated with 10% CO2+90% O2 to a solution saturated with 100% O2. Both approaches evoked hyperpolarization of EC. After intracellular Ca2+ chelation by pretreatment of aortic preparations with 20 μM BAPTA-AM, the amplitude of NH4Cl-induced hyperpolarization dropped from 3.9±0.6 to 0.7±0.3 mV. After pretreatment with ATP, NH4Cl-induced hyperpolarization was not abolished, whereas after caffeine pretreatment this hyperpolarization was not observed. In the Na+-free solution and in the presence of furosemide, ATP-evoked hyperpolarization became longer. The same effect was also observed in the presence of sodium acetate, which directly acidifies the cytosol. In the Ca2+-free solution, furosemide did not induce prolongation of ATP-evoked hyperpolarization. Taking into account the results, it could be proposed that, first, hyperpolarization of EC after intracellular alkalinization is a result of Ca2+ release from the intracellular stores sensitive both to an increase in intracellular pH and to caffeine application. Second, intracellular alkalinization, being a result of activation of Na+−H+-antiporter, inhibits influx of extracellular Ca2+ into EC under ATP stimulation.  相似文献   

14.
To activate Na+/H+ exchange, intracellular pH (pHi) of erythrocytes of the river lamprey Lampetra fluviatilis were changed from 6 and 8 using nigericin. The Na+/H+ exchanger activity was estimated from the values of amiloride-sensitive components of Na+ (22Na) inflow or of H+ outflow from erythrocytes. Kinetic parameters of the carrier functioning were determined by using Hill equation. Dependence of Na+ and H+ transport on pHi value is described by hyperbolic function with the Hill coefficient value (n) close to 1. Maximal rate of ion transport was within the limits of 9–10 mmol/l cells/min, and the H+ concentration producing the exchanger 50% activation amounted to 0.6–1.0 μM. Stimulation of H+ outcome from acidified erythrocytes (pHi 5.9) with increase of H+ concentration in the incubation medium is described by Hill equation with n value of 1.6. Concentration Na+ for the semimaximal stimulation of H+ outcome amounted to 10 mM. The obtained results indicate the presence in lamprey erythrocytes of only binding site for H+ from the cytoplasm side and the presence of positive cooperativity in Na+-binding from the extracellular side of the Na+/H+ exchanger. Na+ efflux from cells in the Na+-free medium did not change at a 10-fold increase of H+ concentration in the incubation medium. The presented data indicate differences of kinetic properties of the lamprey erythrocyte Na+/H+ exchanger and of this carrier isoforms in mammalian cells. In intact erythrocytes the dependence of the amiloride-sensitive Na+ inflow on its concentration in the medium is described by Hill equitation with n 1.6. The Na+ concentration producing the 50% transport activation amounted to 39 mM and was essentially higher as compared with that in acidified erythrocytes. These data confirm conception of the presence of two amiloride-sensitive pathways of Na+ transport in lamprey erythrocytes.  相似文献   

15.
Time courses of cytoplasmic and vacuolar pH changes under salt stress were monitored by in vivo31P-nuclear magnetic resonance spectroscopy in intact cells of Nitellopsis obtusa. When cells were treated with 100 millimolar NaCl for 2 hours, the cytoplasmic pH deceased from 7.2 to 7.0, while the vacuolar pH increased from 4.9 to 5.2. This salt-induced breakdown of the pH gradient between the cytoplasm and the vacuole was also confirmed through direct measurements of change in vacuolar pH with a micro-pH electrode. We speculate that the intracellular pH changes induced by the salt stress mainly results from the inhibition of the H+-translocating pyrophosphatase in the vacuolar membrane, since this H+-translocating system is sensitive to salt-induced increase in the cytoplasmic [Na+] and a simultaneous decrease in the cytoplasmic [K+]. Since disturbance of the cytoplasmic pH value should have serious consequences on the homeostasis of living cells, we propose that the salt-induced intracellular pH changes are one of initial and important steps that lead to cell death.  相似文献   

16.
Ammonium ion transport—a cause of cell death   总被引:1,自引:0,他引:1  
Ammonium can be transported into the cell by ion pumps in the cytoplasmic membrane. Ammonia then diffuse out through the cell membrane. A futile cycle is created that results in cytoplasmic acidification and extracellular alkalinisation. Ammonium transport can be quantified by measuring the extracellular pH changes occurring in a cell suspension (in PBS) after addition of ammonium. By using this technique, in combination with specific inhibitors of various ion pumps, it was shown that ammonium ions are transported across the cytoplasmic membrane by the Na+K+2Cl--cotransporter in both hybridoma and myeloma cells. Further, the Na+/H+ exchanger, which regulates intracellular pH by pumping out protons, was shown to be active during ammonium exposure. The viability of hybridoma cells suspended in PBS and exposed to NH inf4 sup+ for only 90 min, was reduced by 11% (50% necrosis and 50% apoptosis). A control cell suspension did not loose viability during this time. Turning off the activity of the Na+/H+ exchanger (by amiloride) during ammonium exposure decreased viability further, while inhibiting transport itself (by bumetanide) restored viability to the same level as for the control experiment with bumetanide alone. These results show that one effect of ammonia/ammonium on cell physiology is specifically related to the inward transport of ammonium ions by membrane bound ion pumps.Abbreviations q pH specific rate of pH increase (pH units per min and 106 cells per ml)  相似文献   

17.
Summary To identify ion transport systems involved in the maintenance of vascular smooth muscle cell volume the effects of incubation medium osmolality and ion transport inhibitors on the volume and 86Rb and 22Na transport in cultured smooth muscle cells from rat aorta (VSMC) have been studied. A decrease of medium osmolality from 605 to 180 mosm increased intracellular water volume from 0.6 to 1.3 l per 106 cells. Under isosmotic conditions, cell volume was decreased by ouabain (by 10%, P< 0.005) but was not influenced by bumetanide, furosemide, EIPA and quinidine. These latter compounds were also ineffective in cell volume regulation under hypotonic buffer conditions. Under hyperosmotic conditions, cell volume was decreased by bumetanide (by 7%, P<0.05) and by ethylisopropyl amiloride (by 13%, P< 0.005). Ouabain-sensitive 86Rb influx was decreased by 30–40% under hypoosmotic conditions. An increase in medium osmolality from 275 to 410 mosm resulted in an eightfold increase in bumetanide-inhibited 86Rb influx and 86Rb efflux. The (ouabain and bumetanide)-insensitive component of 86Rb influx was not dependent on the osmolality of the incubation medium. However (ouabain and bumetanide)-insensitive 86Rb efflux was increased by 1.5–2 fold in VSMC incubated in hypotonic medium. Ethylisopropyl amiloride-inhibited 22Na influx was increased by sixfold following osmotic-shrinkage of VSMC. The data show that both Na+/H+ exchange and Na+/K+/2Cl cotransport may play a major role in the regulatory volume increase in VSMC. Basal and shrinkage-induced activities of Na+/K+/2Cl cotransport in VSMC were similarly sensitive to inhibition by either staurosporin, forskolin, R24571 or 2-nitro4-carboxyphenyl N,N-diphenylcarbomate (NCDC). In contrast basal and shrinkage-induced Na+/K+/2Cl cotransport were differentially inhibited by NaF (by 30 and 65%, respectively), suggesting an involvement of guanine nucleotide binding proteins in the volume-sensitive activity of this carrier. Neither staurosporin, forskolin, R24571 nor NCDC influenced shrinkage-induced Na+/H+ exchange activity. NaF increased Na+/H+ exchanger activity under both isosmotic and hyperosmotic conditions. These data demonstrate that different intracellular signalling mechanisms are involved in the volume-dependent activation of the Na+/K+/2Cl cotransporter and the Na+/H+ exchanger.The authors gratefully acknowledge the financial support of the Swiss National Foundation, grant No. 3.817.087. Bernadette Weber is thanked for preparing the figures.  相似文献   

18.
To study H+ transport, the lamprey red blood cells were acidified to pH 6.0 by a pretreatment with an ionophore, nigericin. Incubation of the acidified cells in NaCl-medium at pH 8.0 was accompanied by a rapid H+ efflux from the erythrocytes. There was a tenfold decrease of the H+ efflux rate on addition to NaCl-medium of dimethylamiloride or on replacing Na+ in the medium (KCl-medium, pH 8.0). A high rate of Na+ influx into the acidified erythrocytes occurred only in the presence of H+ gradient (pH medium 8.0), but not in its absence (pH medium 6.0). The Na+-dependent H+ efflux from the cells and H+-dependent Na+ influx into the cells were quantitatively similar (about 700 mmol/l cells/h). A rapid elevation of the intracellular Na+ concentration as measured by flame photometry was also observed during incubation of the acidified cells in NaCl-medium (pH 8.0). The H+-dependent Na+ influx and an increase of the Na+ content in the acidified cells were significantly inhibited by amiloride. The data obtained for the first time prove with certainty the presence of the Na+/H+ exchanger in erythrocytes of the river lamprey.  相似文献   

19.
Anin vitro cultured rat perirenal preadipocyte (PA) was established as a model system to investigate the role of the intracellular pH (pHi) and of the Na+ /H+ exchanger during PA proliferation and differentiation. pH sensitive probe, 2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF), was employed to measure the pHi of PA and to determine the Na+/H+ exchange activity. The results showed that there was Na+/H+ exchange activity in the plasma membrane of PA, FCS stimulated DNA synthesis measured by3H-TdR incorporation, and the activation of Na+ /H+ exchanger resulted in pHi increase (nearly 0.2 pH unit) within 2 min. Ethyl-isopropyl-amiloride (EIPA), a specific Na+/H+ exchange inhibitor, inhibited Na+/H+ exchange activity and DNA synthesis. In the absence of serum insulin did not stimulate DNA synthesis but did induce PA differentiation characterized by the appearance of adiposome in the cell and the enhancement of glyeerol-3-phosphate dehydrogenase (G3PDHase) activity. Meantime, insulin was also found to stimulate Na+/H+ exchange activity and pHi increase. EIPA inhibited Na+/H+ exchanger activation induced by insulin and also partially inhibited the enhancement of G3PDHase activity. These results demonstrated that the activation of Na+ /H+ exchange and the resulting pHi increase are the early events related to both proliferation and differentiation of PA.  相似文献   

20.
We used 31P NMR to investigate the temperature-dependence of intracellular pH (pH i ) in isolated frog skeletal muscles. We found that ln[H+ i ] is a linear function of 1/T abs paralleling those of neutral water (i.e., H+= OH) and of a solution containing the fixed pH buffers of frog muscle cytosol. This classical van't Hoff relationship was unaffected by inhibition of glycolysis and was not dependent upon the pH or [Na+] in the bathing solution. Insulin stimulation of Na+-H+ exchange shifted the intercept in the alkaline direction but had no effect on the slope. Acid loading followed by washout resulted in an amiloride-sensitive return to the (temperature dependent) basal pH i . These results show that the temperature dependence of activation of Na+-H+ exchange is similar to that of the intracellular buffers, and suggest that constancy of [H+]/[OH] with changing temperature is achieved in the short term by intracellular buffering and in the long term by the set-point of the Na+-H+ exchanger. Proton activation of the exchanger has an apparent standard enthalpy change (ΔH°) under both control and insulin-stimulated conditions that is similar to the ΔH° of the intracellular buffers and approximately half of the ΔH° for the dissociation of water. Thus, the temperature-dependent component of the standard free-energy change (ΔF°) is unaffected by insulin stimulation, suggesting that changes in Arrhenius activation energy (E a ) may not be a part of the mechanism of hormone stimulation. Received: 12 February 1997/Revised: 1 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号