首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
生物传感器是一种对生物物质的敏感,并且将其浓度转换成电信号进行检测的仪器。生物传感器是一种由固定化的生物敏感材料作为识别酶、抗原和微生物等生物活性物质,并且能够和适当的理化换能器和信号放大设备构成的分析的系统或者是工具,具有接收器和转换器的功能。目前生物传感器在食品工业、环境监测和发酵工业以及医学等领域都有所应用,并且随着生物科学等成果的发展,已经有了飞速的发展。本文将对生物传感器的发展现状进行分析,并且简述其在各个领域的应用情况。  相似文献   

2.
抗生素滥用导致的细菌耐药性的增强,给人类医疗健康及环境带来巨大挑战。生物传感器凭借其优点,在抗生素研究领域有着重要的应用价值。介绍生物传感器在抗生素研究领域中的应用,包括环境及食品中的抗菌研究,展望了未来发展方向。  相似文献   

3.
消失波生物传感器及其在DNA与免疫分析中的应用   总被引:1,自引:0,他引:1  
消失波光纤生物传感器是近年来发展很快的一项的分析技术。它现在已成为分了生物学领域的热门技术。本文叙述消失波生物传感器的识别元件,换能装置以及检测研究系统的研究进展。着重讨论消失波技术在DNA检测与免疫检测中的应用。并对这些技术的应用价值做出评价。  相似文献   

4.
DNA传感器研究进展   总被引:3,自引:0,他引:3  
本文概述了当前生物传感器的研究特点以及发展DNA生物传感器的迫切性;从不同角度阐述了DNA生物传感器的概念和研究内容;着重讨论了DNA生物传感器的研究现状和发展趋势。文中分别对DNA光生物传感器和DNA压电晶体生物传感器的基本原理、特点、研究进展及存在的问题进行了分析与说明。进而,对我国DNA生物传感器研究存在的差距和发展前景进行了简要论述。  相似文献   

5.
用于环境监测的生物传感器   总被引:4,自引:0,他引:4  
生物传感器是一项综合了多门学科的高新技术,具有特异性好、灵敏度高、分析速度快、能在复杂体系中在线连续监测等特点,被广泛用于生命科学、医学检验、食品安全及环境监测等多个领域。其中,在环境检测中的应用尤为令人瞩目。该文概括了生物传感器的原理、发展以及分类。并以各类生物学识别元件为依据将生物传感器分为酶传感器、微生物传感器、组织器官传感器、细胞器传感器、免疫传感器、DNA传感器等几种基本类型,分别回顾了各类生物传感器在环境监测中的应用情况,并对其应用前景进行了展望。  相似文献   

6.
硅纳米线(SiNW)作为一种新型一维纳米材料,具有高比表面积、高稳定性等特点,在传感器领域得到了重视和研究.随着硅纳米线制备工艺优化、修饰方式多样化,以硅纳米线为载体的生物传感器被应用到了金属离子检测、蛋白质检测等诸多领域,较为优良的生物兼容性为生物学研究中的单细胞动态、实时监测提供了途径,电学、光学等不同检测手段也促...  相似文献   

7.
SPR生物传感器及其应用进展   总被引:9,自引:0,他引:9  
基于表面等离子体共振 (SPR)技术的光学生物传感器是进行生物分子相互作用分析的一种先进手段。与传统的超速离心、荧光法等相比 ,它具有实时检测、无需标记、耗样最少等特点 ,在药物筛选、临床诊断、食物及环境监控和膜生物学等领域中的新兴应用日益扩大 ,并且已成为生命科学和制药研究的一种标准的生物物理学工具。综述了近几年国际上生物传感器的应用进展情况 ,并简要展望了该技术的发展和应用前景  相似文献   

8.
在线生物监测技术及其应用研究   总被引:2,自引:0,他引:2  
同化学分析或化学传感器相比,在线生物监测技术具有灵敏度高、费用低、能够综合反映水质变化等优点。对目前国际上几种在线生物监测技术进行了分析,列举了该技术在不同领域的应用,表明该技术对重大水质污染事件等的早期预警具有不可替代的优点,也可作为化学品安全性评价中生物毒性研究的重要手段。  相似文献   

9.
生物传感器在微生物检测中的应用   总被引:1,自引:0,他引:1  
生物传感器的产生在医药卫生,食品检验和环境监测等领域引起了一场革命,其简单,快速和准确的特点超越了以往诸多分析手段。本文介绍了生物传感器概念,介绍了生物传感器在微生物检测中的应用。  相似文献   

10.
压电生物传感器及其研究进展   总被引:8,自引:0,他引:8  
生物传感器的研究是近年来生物化学,分子生物学,传感器技术等领域的研究热点。本文简要介绍了压电生物传感器(PEBS)的基本原理,组成和分类,重点对近年为国内外PEBS方面的研究进展,生物识别元件的固定化技术和PEBS的发展趋势进行了综述。  相似文献   

11.
Based on mimicking biological olfaction, biosensors have been applied for the detection of various ligands in complex environment, which could represent one of the most promising research fields. In this study, the basic characters of one insect odorant binding protein (OBP) as a biosensor were explored. To explore the molecular recognition process, the tertiary structure of the protein was modeled and the protein-ligand interactions with 1,536,550 chemicals were investigated by the molecular docking. The availability of large amount of recombinant SlitOBP1 overcame the difficulty to obtain biological sensing material. After obtained the purified recombinant protein, the result of fluorescence binding assays proved the candidate protein has good affinities with the majority of the tested chemicals. With the aid of simulation docking, the key conserved amino acids within the binding site were identified and then mutated to alanine. After mutation, the protein-ligand binding characteristics were recorded, and the competitive binding assays were carried out to provide experimental verification. The detailed information on its structure and affinities investigated in this study could allow the design of specific mutants with desired characteristics, which provides a solid base for tailoring OBP for biosensor and provides a role model for screening the other elements in olfactory system for different applications.  相似文献   

12.
核酸适配体是通过体外指数富集配体系统进化(SELEX)技术筛选获得,并能够和蛋白质靶标高特异性、高亲和力结合的单链寡核苷酸。核酸适配体不但具有抗体的识别特性,而且具有自己独特的优良性能,目前已应用于分析检验、食品安全和生物医药等各个领域。蛋白质具有多种多样的生物功能以及临床诊断价值。因此,核酸适配体针对蛋白质靶标并在蛋白质相关的基础研究领域受到广泛的关注。核酸适配体应用性能的优劣取决于与其靶标蛋白质的亲和力与特异性。本文主要综述核酸适配体对蛋白质靶标的亲和力表征方法,以及在药物研发、肿瘤检测、生物成像以及生物传感器方面的应用。  相似文献   

13.
Biological molecules such as enzymes and antibodies display a unique capacity to recognize and respond to other molecules in a way which can be exploited in the development of analytical devices. In a biosensor, the biological recognition system creates a physiochemical change proximal to a suitable transducer and thereby converts the concentration of the analyte into a quantifiable electrical signal. The design and construction of these devices requires an imaginative combination of biological, chemical, physical and engineering disciplines. Biosensors will find application in a variety of analytical fields.  相似文献   

14.
With the escalation of drug discovery programmes, it has become essential to visualize and monitor biological activities in healthy and pathological cells, with high spatial and temporal resolution. To this aim, the development of probes and sensors, which can report on the levels and activities of specific intracellular targets, has become essential. Together with the discovery of the Green Fluorescent Protein (GFP), and the development of GFP-based reporters, recent advances in the synthesis of small molecule fluorescent probes, and the explosion of fluorescence-based imaging technologies, the biosensor field has witnessed a dramatic expansion of fluorescence-based reporters which can be applied to complex biological samples, living cells and tissues to probe protein/protein interactions, conformational changes and posttranslational modifications. Here, we review recent developments in the field of fluorescent biosensor technology. We describe different varieties and categories of fluorescent biosensors together with an overview of the technologies commonly employed to image biosensors in cellulo and in vivo. We discuss issues and strategies related to the choice of synthetic fluorescent probes, labelling, quenching, caging and intracellular delivery of biosensors. Finally, we provide examples of some well-characterized genetically encoded FRET reporter systems, peptide and protein biosensors and describe biosensor applications in a wide variety of fields.  相似文献   

15.
The review summarizes the current Russian research in the field of biological sensors for detection of carbohydrates, alcohols, medicines, enzyme inhibitors, toxicants, heavy metal ions, as well as viruses and microbial cells. Some of the presented works describe the analytical parameters of biosensors; other publications provide a basis for their development. The review covers mainly publications that have appeared over the past 10 years. As a whole, the collected material gives an idea of the main tendencies of biosensor development in Russia. The review is not meant to be comprehensive but highlights the major trends in this field in the last decade.  相似文献   

16.
Ultimately, advances in genomics, proteomics and metabolomics will be realized by combining these approaches with biophysical sensors for understanding the functional and structural (physiological) aspects of sub-cellular systems (cytomics). Therefore, the emergence of the new fields of cytomics and physiomics will require new technologies to probe the functional realm of living cells. While amperometric sensors have been used, their sensitivity and reliability are significantly improved through the development of new strategies and data acquisition systems for the operation of the sensors. This includes the application of the principles of the vibrating or self-referencing microsensor to the operation of amperometric sensors. The development of self-referencing amperometry (SRA) is significant because it effectively converts static concentration sensors into dynamic biophysical sensors that directly monitor physiological flux. SRA has been developed for analytes such as O2, NO, H2O2 and ascorbate. These sensors have been validated against non-biological microscopic flux sources that were theoretically modeled, before being applied to biological research. This new sensor technology has been shown, through research in a wide variety of biological and biomedical research projects, to be an important new tool in the arsenal of the cell biologist. SRA technology has been adapted through SRA-H2O2 and SRA-NADH sensors, for electrochemically coupled enzyme based self-referencing biosensors (SRB) for glucose, glutamate and ethanol. These developments in self-referencing sensor technologies offer great promise in extending electroanalytical chemistry and biosensor technologies from the micro to the nanoscale where researchers can study physiology at the sub-cellular and organellar levels.  相似文献   

17.
Recent advances in the development of bioelectronic nose   总被引:1,自引:0,他引:1  
The olfactory system has the ability to discriminate and identify thousands of odorant compounds at very low concentrations. Recently, many researchers have been trying to develop artificial sensing devices that are based on the olfactory system. A bioelectronic nose, which uses olfactory receptors (ORs) as sensing elements, would benefit naturally optimized molecular recognition. Accordingly, ORs can be effectively used as a biological element in bioelectronic noses. Bioelectronic nose can be classified into cell-based and protein-based biosensors. The cell-based biosensor uses living cells that express olfactory receptors as the biological sensing elements and the protein-based biosensor uses the olfactory receptor protein. The binding of odorant molecules to the ORs can be measured using various methods such as piezoelectric, optic, and electric devices. Thus, bioelectronic nose can be developed by combining the biological sensing elements with these non-biological devices. The application of bioelectronic nose in a wide range of different scientific and medical fields is essentially dependent on the development of highly sensitive and selective biosensors. These sensor systems for the rapid detection of specific odorants are crucial for environmental monitoring, anti-bioterrorism, disease diagnostics, and food safety. In this article, we reviewed recent advances in the development of bioelectronic nose.  相似文献   

18.
Whole-cell biosensors are mostly non-specific with respect to their detection capabilities for toxicants, and therefore offering an interesting perspective in environmental monitoring. However, to fully employ this feature, a robust classification method needs to be implemented into these sensor systems to allow further identification of detected substances. Substance-specific information can be extracted from signals derived from biosensors harbouring one or multiple biological components. Here, a major task is the identification of substance-specific information among considerable amounts of biosensor data. For this purpose, several approaches make use of statistical methods or machine learning algorithms. Genetic Programming (GP), a heuristic machine learning technique offers several advantages compared to other machine learning approaches and consequently may be a promising tool for biosensor data classification. In the present study, we have evaluated the use of GP for the classification of herbicides and herbicide classes (chemical classes) by analysis of substance-specific patterns derived from a whole-cell multi-species biosensor. We re-analysed data from a previously described array-based biosensor system employing diverse microalgae (Podola and Melkonian, 2005), aiming on the identification of five individual herbicides as well as two herbicide classes. GP analyses were performed using the commercially available GP software 'Discipulus', resulting in classifiers (computer programs) for the binary classification of each individual herbicide or herbicide class. GP-generated classifiers both for individual herbicides and herbicide classes were able to perform a statistically significant identification of herbicides or herbicide classes, respectively. The majority of classifiers were able to perform correct classifications (sensitivity) of about 80-95% of test data sets, whereas the false positive rate (specificity) was lower than 20% for most classifiers. Results suggest that a higher number of data sets may lead to a better classification performance. In the present paper, GP-based classification was combined with a biosensor for the first time. Our results demonstrate GP was able to identify substance-specific information within complex biosensor response patterns and furthermore use this information for successful toxicant classification in unknown samples. This suggests further research to assess perspectives and limitations of this approach in the field of biosensors.  相似文献   

19.
甲虫作为节肢动物中一个庞大的类群,具有繁简各异的生活习性,在生态系统中发挥极为重要的作用.甲虫群落构建是群落生态研究的重要内容之一,可揭示不同生态环境下生物多样性的形成与维持机制.现阶段对甲虫群落构建的研究主要通过物种的功能性状,或将系统发育结构与物种功能性状相结合的方法,对群落构建过程进行解析,用以判断主要的驱动因素...  相似文献   

20.
Nanobiotechnology is defined as an interdisciplinary field of science that studies the application of fine-sized biological objects (of nanoscale, 1-100 nm) to design the devices and systems of the same size that utilize for new purposes the unusual, known, or previously unknown effects. Analysis demonstrates that the final goals, approaches, solution methods, and applications of nanostructures and biological sensors have much in common. This brief review attempts to systematize a number of the available data and pick out an organic connection of the new research direction with the field of biosensor technology, which have reached the level of sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号