首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
盐胁迫对大豆根系木质部压力和Na+吸收的影响   总被引:1,自引:0,他引:1  
取栽培大豆的水培幼苗为材料,用木质部压力探针和原子吸收分光光度计测定了盐胁迫条件下其根木质部压力和伤流液中Na~+含量的变化,以分析大豆抗盐吸水的机制.结果表明:在25~150 mmol/L NaCl的浓度范围内,随着盐胁迫强度的增加,大豆根木质部负压力的绝对值逐渐增大,但相对负压力和根的径向反射系数则逐渐减小;木质部伤流液中Na~+含量逐渐增加,但Na~+的相对含量则逐渐降低.同时,虽然根系吸水所需的木质部负压力(压力势)及根木质部伤流液的渗透势随着盐胁迫强度的增加都有所下降,但两者共同作用使木质部水势下降的幅度远远小于根外溶液水势(渗透势)下降的幅度,即随着根外溶液盐浓度的升高,根木质部溶液的总水势逐渐高出根外溶液的水势.上述结果说明,在盐胁迫下大豆可以利用相对小的木质部负压力逆水势梯度吸水,且通过避免对Na~+的过量吸收来适应盐胁迫环境.  相似文献   

2.
Aims          下载免费PDF全文
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明:(1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶,盐胁迫下根系生长和根尖数显著受到抑制,根木质部易于发生栓塞,导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定,轻度(0.05 mol·L–1 Na Cl)和中度(0.15 mol·L–1 Na Cl)盐胁迫下,胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率,维持植物正常生长;重度(0.30 mol·L–1 Na Cl)盐胁迫下,胡杨茎木质部导管输水有效性和安全性均明显降低,木质部导水率显著下降,并伴随叶片气孔导度的显著降低,从而严重抑制了胡杨的光合和生长。  相似文献   

3.
胡杨木质部水分传导对盐胁迫的响应与适应   总被引:2,自引:0,他引:2       下载免费PDF全文
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明:(1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶,盐胁迫下根系生长和根尖数显著受到抑制,根木质部易于发生栓塞,导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定,轻度(0.05 mol·L–1 Na Cl)和中度(0.15 mol·L–1 Na Cl)盐胁迫下,胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率,维持植物正常生长;重度(0.30 mol·L–1 Na Cl)盐胁迫下,胡杨茎木质部导管输水有效性和安全性均明显降低,木质部导水率显著下降,并伴随叶片气孔导度的显著降低,从而严重抑制了胡杨的光合和生长。  相似文献   

4.
盐胁迫对苹果器官中钙镁铁锌含量的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
以盆栽2年生富士苹果树(砧木为平邑甜茶M. hupehensis Reld)为试材,研究了盐胁迫对苹果矿质营养平衡的影响.结果表明,在盐胁迫下,苹果各器官不同时期的单位干样中Ca、Mg、Fe和Zn含量的平均值没有明显变化,但各元素与Na的比值明显下降,特别是在高盐(3‰ NaCl)胁迫下下降更为明显,从而破坏了树体内元素平衡.在无盐和盐胁迫下,苹果各器官中Ca含量的顺序为主干韧皮部>叶片、新梢>根>主干木质部;Mg含量为新梢、根>主干木质部、主干韧皮部、叶片;Fe含量为根>叶片>主干韧皮部、新梢>主干木质部;Zn含量为新梢>叶片>根、主干韧皮部>主干木质部. 与对照相比,器官中各元素含量在胁迫期间表现出不同程度的波动性.  相似文献   

5.
盐胁迫对三角叶滨藜根选择透性和反射系数的影响   总被引:2,自引:0,他引:2  
以Hoagland溶液培养的三角叶滨藜幼苗为材料,分别采用电导率法、原子吸收分光光度计法和压力室法测定了不同浓度盐胁迫下三角叶滨藜根的质膜透性、离子吸收和根系反射系数,分析其抗盐特点和机制.结果表明:随着盐胁迫强度的增加,三角叶滨藜根细胞质膜透性增大、根系反射系数减小;盐胁迫导致三角叶滨藜根系对K+的总吸收量减少、对Na+的总吸收量增多,但对Na+的相对吸收量减少、对K+的相对吸收量增加.盐胁迫条件下,三角叶滨藜根系对离子吸收有较强的调节能力;而根系反射系数的减小有利于根系用较小的负压力吸收水分,减小木质部空化的危险.说明三角叶滨藜具有较高的抗盐能力.  相似文献   

6.
 以同处于干旱区的塔里木河下游(铁干里克)和黑河下游(乌兰图格)断面为研究区, 比较了荒漠河岸林主要建群种胡杨(Populus euphratica)、柽柳(Tamarix spp.)、疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspia)在长期遭受不同干旱胁迫下的根、枝条木质部导水力和栓塞化程度的变化特征, 并分析了木质部导水对干旱胁迫的响应及适应策略。结果表明: 1) 黑河下游荒漠河岸林植物的导水能力显著高于塔里木河下游, 其中柽柳、胡杨、疏叶骆驼刺和花花柴根木质部的初始比导率(Ks0)分别高11.97、6.74、7.10和3.73倍, 枝条的Ks0分别高9.48、3.65、2.07和1.88倍, 地下水埋深导致的干旱胁迫程度不同是诱发荒漠植物导水能力差异的根本原因; 2)柽柳耐干旱能力最强, 适应范围较宽, 而花花柴、疏叶骆驼刺的耐旱性相对较弱, 适生范围较窄, 这可能与植物的根系分布有关; 3)干旱胁迫较轻时, 枝条木质部是荒漠河岸林植物水分传输的主要阻力部位, 干旱胁迫严重时, 根木质部是限制植株水流的最大阻碍部位; 4)荒漠河岸林植物主要通过调节枝条木质部的水流阻力来适应干旱胁迫, 且其适应策略与干旱胁迫程度有关, 干旱胁迫轻时, 植物通过限制枝条木质部水流来协调整株植物的均匀生长; 干旱胁迫严重时, 植物通过牺牲劣势枝条、增强优势枝条水流来提高植株整体生存的机会。  相似文献   

7.
盐胁迫严重限制着植物的生长发育,造成农业产量下降。植物遭受盐胁迫时,细胞代谢受到抑制,体内会积累较多活性氧(ROS)进而对植物造成氧化胁迫,诱导自噬现象的产生。本文主要研究了植物对于盐胁迫诱导的自噬及其反应的调控机制。研究中发现,在高盐浓度处理的拟南芥幼苗中自噬现象迅速产生,伴随着NADPH氧化酶活性的明显上升。此外,通过用荧光探针Lyso Tracker Red(LTR)定位自噬小体,激光共聚焦观察发现At TOR不仅可以在正常生理环境下抑制自噬小体的生成,而且可以在高盐浓度胁迫环境下抑制自噬。进而我们发现在高盐浓度处理的同时添加NADPH氧化酶抑制剂DPI后,处理过后的WT株系拟南芥根细胞自噬现象受到明显抑制,而At TOR突变体中并未有明显的变化。因此NADPH氧化酶很有可能参与At TOR对盐胁迫诱导自噬的信号通路的调控。该研究结果为进一步分析植物耐受性机理和自噬的信号通路提供理论依据。  相似文献   

8.
盐胁迫会引起渗透胁迫、离子毒害和次级胁迫,极大危害到植物的生存。之前的研究中,借助于分子生物学和遗传学手段,已经鉴定出多个基因参与到盐胁迫信号通路的调控,其中SOS途径是主要的植物抗盐调节机制。氨基酸、甜菜碱、可溶性糖等渗透调节物质,脯氨酸、多胺等信号小分子,SOD、CAT等抗氧化酶,HKT等离子通道蛋白均参与到了植物对盐胁迫的响应。本研究总结了盐胁迫条件下植物调控离子平衡、氧化胁迫、生长发育的最新研究进展,为之后的研究提供依据。  相似文献   

9.
植物盐胁迫应答蛋白质组学分析   总被引:3,自引:0,他引:3  
张恒  郑宝江  宋保华  王思宁  戴绍军 《生态学报》2011,31(22):6936-6946
土壤盐渍化是限制植物生长和分布的关键因素之一,揭示植物盐胁迫应答的分子机理是借助分子生物学手段提高植物耐盐性的基础.近年来,人们利用高通量蛋白质组学技术分析了拟南芥、水稻等19种植物的盐胁迫应答蛋白质表达图谱.从植物类群(盐生植物和甜土植物)、组织器官(根、地上部分/茎、胚根和胚轴、叶片、花序和配子体)、细胞(悬浮培养细胞、愈伤组织细胞和单细胞生物)和亚细胞结构(叶绿体、质膜和质外体)几方面整合分析了植物盐胁迫应答蛋白质组表达模式特征,主要特征包括:(1)盐生植物通过全面调节细胞骨架重塑、离子转运和区隔化、渗透平衡、活性氧(ROS)清除、信号转导、光合作用和能量代谢等信号与代谢网络体系,获得相对较高的抗/耐盐能力;(2)植物地上部分(叶片、茎、配子体)或光合组织细胞(悬浮培养细胞、愈伤组织细胞和单细胞盐藻)通过调节参与光合作用、碳和能量代谢、ROS清除过程蛋白质的表达模式应对盐胁迫环境;(3)植物地下部分(根、胚根)通过调控信号转导和离子转运相关蛋白质感知/传递盐胁迫信号并维持离子平衡;(4)花序中参与渗透调节、转录调控、蛋白质加工和ROS清除的蛋白质在盐胁迫条件下变化显著;(5)叶绿体通过调控参与光合作用、蛋白质加工和周转,以及氧化还原系统平衡等过程应对盐胁迫;(6)质外体中参与细胞壁代谢、胁迫防御和信号转导过程的蛋白质受盐胁迫影响明显;(7)细胞膜中参与维持膜结构稳定、物质/离子运输和信号转导过程的蛋白质对植物盐胁迫应答具有重要作用.这些分析为深入研究植物耐盐的分子机制提供了重要信息.  相似文献   

10.
氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响   总被引:3,自引:0,他引:3  
以日本耐盐品种‘帝王新土佐’南瓜为砧木,以’新泰密刺’黄瓜为接穗,在100 mmol·L-1 NaCl胁迫下,对黄瓜嫁接和自根植株不同时期叶片中不同形态多胺含量的变化进行了研究.结果表明:NaCl胁迫下黄瓜嫁接植株游离态腐胺(Put)含量在胁迫2 d时与自根植株无显著差异,其余时间均显著高于自根植株;游离态亚精胺(Spd)和游离态精胺(Spm)含量在整个胁迫期间均显著高于自根植株;游离态多胺总量(PAs)在胁迫第4天出现峰值;嫁接植株游离态Put/PAs值在胁迫4 d时与自根植株无显著差异,其余胁迫时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株;嫁接植株结合态和束缚态Put、Spd和Spm含量在整个胁迫期间均显著高于自根植株,结合态和束缚态PAs在胁迫第6天出现峰值;结合态多胺的Put/PAs值和(Spd+Spm)/Put值变化趋势与游离态多胺一致;嫁接植株束缚态Put/PAs值在胁迫6 d时与自根植株无显著差异,其余时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株.表明黄瓜嫁接植株表现出较强的耐盐特征.  相似文献   

11.
The response of halophyte arrowleaf saltbush (Atriplex triangularis Willd) plants to a gradient of salt stress were investigated with hydroponically cultured seedlings. Under salt stress, both the Na+ uptake into root xylem and negative pressures in xylem vessels increased with the elevation of salinity (up to 500 mol/m3) in the root environment. However, the increment in negative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions, even when the osmotic potential of xylem sap is taken into consideration. The total water potential of xylem sap in arrowleaf saltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low, but a progressively increased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observed when the salinity in the root environment was enhanced. The maximum gap was 1.4 MPa at a salinity level of 500 mol/m3 without apparent dehydration of the tested plants. This discrepancy could not be explained with the current theories in plant physiology. The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress was and accompanied by an increase in the Na+ uptake into xylem sap. However, the relative Na+ in xylem exudates based on the corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease. The results showed that the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaCl into xylem when the radial reflection coefficient of the root was considerably small; and that arrowleaf saltbush could use small xylem pressures to counterbalance the salt stresses, either with the uptake of large amounts of salt, or with the development of xylem pressures dangerously negative. This strategy could be one of the mechanisms behind the high resistance of arrowleaf saltbush plants to salt stress.  相似文献   

12.
The response of halophyte arrowleaf saltbush(Atriplex triangularis Willd)plants to a gradient of salt stress were investigatedwith hydroponically cultured seedlings.Under salt stress,both the Na~ uptake into root xylem and negative pressures inxylem vessels increased with the elevation of salinity(up to 500 mol/m~3)in the root environment.However,the increment innegative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions,evenwhen the osmotic potential of xylem sap is taken into consideration.The total water potential of xylem sap in arrowleafsaltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low,but a progressivelyincreased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observedwhen the salinity in the root environment was enhanced.The maximum gap was 1.4 MPa at a salinity level of 500 mol/m~3without apparent dehydration of the tested plants.This discrepancy could not be explained with the current theories inplant physiology.The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress wasand accompanied by an increase in the Na~ uptake into xylem sap.However,the relative Na~ in xylem exudates based onthe corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease.The results showedthat the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaClinto xylem when the radial reflection coefficient of the root was considerably small;and that arrowleaf saltbush could usesmall xylem pressures to counterbalance the salt stresses,either with the uptake of large amounts of salt,or with thedevelopment of xylem pressures dangerously negative.This strategy could be one of the mechanisms behind the highresistance of arrowleaf saltbush plants to salt stress.  相似文献   

13.
Xylem pressure and its relative response to the imposition ofan external osmotic stress (the so-called radial reflectioncoefficient) were recorded in roots of intact maize plants usingthe xylem pressure probe technique. Consecutive insertion oftwo probes into the same xylem vessel or into adjacent vesselsof intact roots of plants exposed to high light intensity andsalt stress under laboratory conditions showed that the xylemtension was not changed by vessel probing. It was also shownby using the double probe approach that the plants were capableof overcoming artificially induced leakages. This and otherevidence reported in the literature convincingly demonstratedthat the probe accurately reads xylem pressure and xylem pressureresponses to osmotic stress. Additional experiments were performedon plants grown in a greenhouse at a subtropical latitude. Underthese conditions the plants were exposed to strong diurnal fluctuationsin light intensity, relative humidity and temperature. The resultsshowed that the absolute xylem pressure in the roots of untreatedplants decreased with increasing transpiration rate from positivevalues in the early morning to negative values around noon (averagevalue –0.15 MPa; maximum negative value –0.57 MPa).As the day progressed and the transpiration rate decreased,xylem pressure increased again to positive values. Correspondingly,the radial reflection coefficient for NaCI increased from aboutzero in the early morning to about unity at noon when transpirationreached its highest value and decreased again to very low valuestowards the evening. The data raise questions concerning conclusionsabout the mechanism of water transport in intact roots drawnfrom the low radial reflection coefficients measured on excisedroots using the root pressure probe. Key words: Xylem pressure probe, osmotic stress, reflection coefficient, transpiration, diurnal changes  相似文献   

14.
Xylem probe measurements in the roots of intact plants of wheat and barley revealed that the xylem pressure decreased rapidly when the roots were subjected to osmotic stress (NaCl or sucrose). The magnitude of the xylem pressure response and, in turn, that of the radial reflection coefficients (σr) depended on the transpiration rate. Under very low transpiration conditions (darkness and high relative humidity), σr assumed values of the order of about 0·2–0·4. The σr values of excised roots were also found to be rather low, in agreement with data obtained using the root pressure probe of Steudle. For transpiring plants (light intensities at least 10 μmol m?2 s?1; relative humidity 20–40%) the response was nearly 1:1, corresponding to radial reflection coefficients of σr= 1. Further increase of the light intensity to about 400 μmol m?2 s?1 resulted in a slight but significant decrease of the σr values to about 0·8. Similar measurements on maize roots confirmed our previous results (Zhu et al. 1995, Plant, Cell and Environment 18, 906–912) that, in intact transpiring plants at low light intensities of about 10 μmol m?2 s?1 and at relative humidities of 20–40% as well as in excised roots, the xylem pressure response was much less than expected from the external osmotic pressure (σr values 0·3–0·5). In contrast to wheat and barley, very high light intensities (about 700 μmol m?2 s?1) were needed to shift the radial reflection coefficients of maize roots to values of about 0·9. Osmotically induced xylem pressure changes were apparently linked to changes in turgor pressure in the root cortical parenchyma cells, as shown by simultaneous measurements of xylem and cell turgor pressure. In analogy to the σr values of the respective glycophytes, the σc values of the root cortical cells of wheat and barley were close to unity, whereas σc for maize was significantly smaller (about 0·7) under laboratory conditions. When the light intensity was increased up to about 700 μmol m?2 s?1 the cellular reflection coefficient of maize roots increased to about 0·95. In contrast to the σr values, the σc values of the three species investigated remained almost unchanged when the leaves were exposed to darkness and humidified air or when the roots were cut. The transpiration-dependent (species-specific) pattern of the cellular and radial reflection coefficients of the root compartment of the three glycophytes apparently resulted from (flow-dependent) concentration-polarization and sweep-away effects in the roots of intact plants. The data could be explained straightforwardly terms of theoretical considerations outlined previously by Dainty (1985, Acta Horticulturae 171, 21–31). The far-reaching consequences of this finding for root pressure probe measurements on excised roots, for the occurrence of pressure gradients under transpiring conditions, and for the non-linear flow-force relationships in roots found by other investigators are discussed.  相似文献   

15.
The absolute pressure in conducting xylem vessels of roots of 2-week-old, slowly transpiring intact maize plants (bathed in nutrition medium) was determined to be +0·024 ± 0·044 MPa using the xylem pressure probe. When the roots were subjected to osmotic stress (NaCI, KCI or sucrose), the xylem pressure decreased immediately and became more negative. However, the response of xylem pressure to osmotic stress was considerably attenuated, indicating that the radial reflection coefficients, σ13 of the maize root for these solutes were rather low (between 0·2 and 0·4 depending on the concentration of the osmoticum). The low values of a, may be caused (partly) by unstirred layer effects. In repeated osmoticum/nutrition regimes a complex pattern of changes in xylem pressure was observed which was apparently linked to the interplay between transpiration and (passive and/or active) solute loading of the xylem. These processes were not observed when the roots were subjected to osmotic stress after excision. In this case, a biphasic response was observed comparable to that found for excised roots using the root pressure probe.  相似文献   

16.
The rise of sap in mangroves has puzzled plant physiologists for many decades. The current consensus is that negative pressures in the xylem exist which are sufficiently high to exceed the osmotic pressure of seawater (2.5 MPa). This implies that the radial reflection coefficients of the mangrove roots are equal to unity. However, direct pressure probe measurements in xylem vessels of the roots and stems of mangrove (Rhizophora mangle) grown in the laboratory or in the field yielded below-atmospheric, positive (absolute) pressure values. Slightly negative pressure values were recorded only occasionally. Xylem pressure did not change significantly when the plants were transferred from tap water to solutions containing up to 1700 mOsmol kg?1 NaCl. This indicates that the radial reflection coefficient of the roots for salt, and therefore the effective osmotic pressure of the external solution, was essentially zero as already reported for other halophytes. The low values of xylem tension measured with the xylem pressure probe were consistent with previously published data obtained using the vacuum/leafy twig technique. Values of xylem tension determined with these two methods were nearly two orders of magnitude smaller than those estimated for mangrove using the pressure chamber technique (?3 to ?6MPa). Xylem pressure probe measurements and staining experiments with alcian blue and other dyes gave strong evidence that the xylem vessels contained viscous, mucilage- and/or protein-related compounds. Production of these compounds resulting from wound or other artifactual reactions was excluded. The very low sap flow rates of about 20–50 cm h?1 measured in these mangrove plants were consistent with the presence of high molecular weight polymeric substances in the xylem sap. The presence of viscous substances in the xylem sap of mangroves has the following implications for traditional xylem pressure measurement techniques, development of xylem tension, and longdistance water transport: (1) high external balancing pressures in the pressure chamber are needed to force xylem sap to the cut surface of the twig; (2) stable tensions much larger than 0.1 MPa can be developed only occasionally because viscous solutions provide nucleation sites for gas bubble formation; (3) the frequent presence of small gas bubbles in viscous solutions allows water transport by interfacial, gravity-independent streaming at gas/water interfaces and (4) the increased density of viscous solutions creates (gravity-dependent) convectional flows. Density-driven convectional flows and interfacial streaming, but also the very low radial reflection coefficient of the roots to NaCl are apparently the means by which R. mangle maintains water transport to its leaves despite the high salinity of the environment.  相似文献   

17.
In earlier work tobacco leaves were placed in a Scholander-Hammel pressure bomb and the end of the petiole sealed with a pressure transducer in order to measure pressure transmission from the compressed gas (Pg) in the bomb to the xylem fluid (Px). Pressure bomb theory would predict a 1:1 relationship for Pg:Px when tobacco leaves start at a balance pressure of zero. Failure to observe the expected 1:1 relationship has cast doubt on the pressure-bomb technique in the measurement of the xylem pressure of plants. The experimental and theoretical relationship between Px and Pg was investigated in Tsuga canadensis (L) branches and Nicotiana rustica (L) leaves in this paper. It is concluded that the non 1:1 outcome was due to the compression of air bubbles in embolized xylem vessels, evaporation of water from the tissue, and the expansion of the sealed stem segment (or petiole) protruding beyond the seal of the pressure bomb. The expected 1:1 relationship could be obtained when xylem embolism was eliminated and stem expansion prevented. It is argued that the non 1:1 relationship in the positive pressure range does not invalidate the Scholander pressure bomb method of measuring xylem pressure in plants because Px never reaches positive values during the determination of the balance pressure.  相似文献   

18.
Barley HvPIP2;1 is a plasma membrane aquaporin and its expression was down-regulated after salt stress in barley [Katsuhara et al. (2002) Plant Cell Physiol. 43: 885]. We produced and analyzed transgenic rice plants over-expressing barley HvPIP2;1 in the present study. Over-expression of HvPIP2;1 increased (1) radial hydraulic conductivity of roots (Lp(r)) to 140%, and (2) the mass ratio of shoot to root up to 150%. In these transgenic rice plants under salt stress of 100 mM NaCl, growth reduction was greater than in non-transgenic plants. A decrease in shoot water content (from 79% to 61%) and reduction of root mass or shoot mass (both less than 40% of non-stressed plants) were observed in transgenic plants under salt stress for 2 weeks. These results indicated that over-expression of HvPIP2;1 makes rice plants sensitive to 100 mM NaCl. The possible involvement of aquaporins in salt tolerance is discussed.  相似文献   

19.
Determination of the pressure in the water-conducting vessels of intactNicotiana rustica L. plants showed that the pressure probe technique gave less-negative values than the Scholander-bomb method. Even though absolute values of the order of −0.1 MPa could be directly recorded in the xylem by means of the pressure probe, pressures between zero and atmospheric were also frequently found. The data obtained by the pressure probe for excised leaves showed that the Scholander bomb apparently did not read the actual tension in the xylem vessles ofNicotiana plants. The possibility that the pressure probe gave false readings was excluded by several experimental controls. In addition, cavitation and leaks either during the insertion of the microcapillary of the pressure probe, or else during the measurements were easily recognized when they occurred because of the sudden increase of the absolute xylem tension to that of water vapour or to atmospheric, respectively. Tension values of the same order could also be measured by means of the pressure probe in the xylem vessels of pieces of stem cut from leaves and roots under water and clamped at both ends. The magnitude of the absolute tension depended on the osmolarity of the bathing solution which was adjusted by addition of appropriate concentrations of polyethylene glycol. Partial and uniform pressurisation of plant tissues or organs, or of entire plants (by means of the Scholander bomb or of a hyperbaric chamber, respectively) and simultaneous recording of the xylem tension using the pressure probe showed that a 1∶1 response in xylem pressure only occurred under a few circumstances. A 1∶1 response required that the xylem vessels were in direct contact with an external water reservoir and/or that the tissue was (pre-)infiltrated with water. Corresponding pressure-probe measurements in isolated vascular bundles ofPlantago major L. orP. lanceolata L. plants attached to a Hepp-type osmometer indicated that the magnitude of the tension in the xylem vessels was determined by the external osmotic pressure of the reservoir. These and other experiments, as well as analysis of the data using classical thermodynamics, indicated that the turgor and the internal osmotic pressure of the accessory cells along the xylem vessels play an important role in the maintenance of a constant xylem tension. This conclusion is consistent with the cohesion theory. In agreement with the literature (P.E. Weatherley, 1976, Philos. Trans. R. Soc. London Ser. B23, 435–444; 1982, Encyclopedia of plant physiology, vol. 12B, 79-109), it was found that the tension in the xylem of intact plants under normal and elevated ambient pressure (as measured with the pressure probe) under quasi-stationary conditions was independent of the transpiration rate over a large range, indicating that the conductance of the flow path must be flow-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号