首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation, structural characterization, and chemical behavior in aqueous solution of a series of new Ru[9]aneS3 half-sandwich complexes of the type [Ru([9]aneS3)Cl(NN)][CF3SO3] and [Ru([9]aneS3)(dmso-S)(NN)][CF3SO3]2 (515, NN = substituted bpy or 2 × 1-methylimidazole) are described. The X-ray structures of [Ru([9]aneS3)Cl(3,3′-H2dcbpy)][CF3SO3] (9) (3,3′-H2dcbpy = 3,3′-dicarboxy-2,2′-bipyridine), [Ru([9]aneS3)Cl(4,4′-dmobpy)][CF3SO3] (13) (4,4′-dmobpy = 4,4′-dimethoxy-2,2′-bipyridine), and [Ru([9]aneS3)Cl(1-MeIm)2][CF3SO3] (15) (1-MeIm = 1-methylimidazole) were also determined. The new compounds are structurally similar to anticancer-active organometallic half-sandwich complexes of formula [Ru(η6-arene)Cl(NN)][PF6]. Three chloro compounds (5, 9, 15) were tested in vitro for cytotoxic activity against two human cancer cell lines in comparison with the previously described [Ru([9]aneS3)Cl(en)][CF3SO3] (1, en = ethylenediamine), [Ru([9]aneS3)Cl(bpy)][CF3SO3] (2), and with their common dmso precursor [Ru([9]aneS3)Cl(dmso-S)2][CF3SO3] (3). Only the ethylenediamine complex 1 showed some antiproliferative activity, ca. one order of magnitude lower than the reference organometallic half-sandwich compound RM175 that contains biphenyl instead of [9]aneS3. This compound was further tested against a panel of human cancer cell lines (including one resistant to cisplatin).  相似文献   

2.
Cyclometalated RuII derivatives of 2-phenylpyridine (Hphpy) [Ru(phpy)(bpy)2]Cl (1a) and [Ru(phpy)(phen)2]Cl (1b) (bpy is 2,2′-bipyridine, phen is 1,10-phenanthroline) behave as noncompetitive inhibitors of glucose oxidase from Aspergillus niger in the enzyme-catalyzed oxidation of d-glucose by O2 into the corresponding lactone at pH 5.0 and 25 °C. The enzymatic activity has been measured by monitoring the O2 consumption. The inhibition constants K i are 0.036 and 0.017 M for 1a and 1b, respectively, indicating that 1b inhibits the enzymatic activity more efficiently than 1a. The well-known coordination compound [Ru(bpy)3]Cl2 (2) behaves, in contrast, as a competitive inhibitor, with K i = 0.018 M under the same conditions. The monophasic consumption of O2 in the case of 1a, 1b, and 2 is replaced by a distinct two-phase kinetics in the presence of the cyclometalated RuIII compound [Ru(phpy)(bpy)2]Cl2 (3), which was obtained from 1a in the presence of a large excess of H2O2 and the iron TAML activator. Interestingly, the rates of the first and the second phases are influenced by 3 in a different way. The rate of the first phase is noticeably higher in the presence of RuIII, although the dependence is nonmonotonic and maximal acceleration is observed at the lowest loadings of 3. The rate of the second phase decreases monotonically on increasing the concentration of the ruthenium complex in solution. The nonmonotonic action of 3 was confirmed by using the doubly cyclometalated RuIII derivative [Ru(phpy)2(bpy)]Cl. The diverse rate variations induced by 3 accounted for acceleration by RuIII of the O2 reduction by the reduced form of glucose oxidase during the first phase, which ceases after the enzymatic reduction of RuIII to the RuII species, the latter behaving similarly to 1a as the inhibitor of the enzyme.  相似文献   

3.
Complexes [Au(2Ac4oT)Cl][AuCl2] (1), [Au(Hpy2Ac4mT)Cl2]Cl·H2O (2), [Au(Hpy2Ac4pT)Cl2]Cl (3), [Pt(H2Ac4oT)Cl]Cl (4), [Pt(2Ac4mT)Cl]·H2O (5), [Pt(2Ac4pT)Cl] (6) and [Pt(L)Cl2OH], L = 2Ac4mT (7), 2Ac4oT (8), 2Ac4pT (9) were prepared with N(4)-ortho- (H2Ac4oT), N(4)-meta- (H2Ac4mT) and N(4)-para- (H2Ac4pT) tolyl-2-acetylpyridine thiosemicarbazone. The cytotoxic activities of all compounds were assayed against U-87 and T-98 human malignant glioma cell lines. Upon coordination cytotoxicity improved in 2, 5 and 8. In general, the gold(III) complexes were more cytotoxic than those with platinum(II,IV). Several of these compounds proved to be more active than cisplatin and auranofin used as controls. The gold(III) complexes probably act by inhibiting the activity of thioredoxin reductase enzyme whereas the mode of action of the platinum(II,IV) complexes involves binding to DNA. Cells treated with the studied compounds presented morphological changes such as cell shrinkage and blebs formation, which indicate cell death by apoptosis induction.  相似文献   

4.
The aim of this work was the synthesis, characterization, and cytotoxicity evaluation of three new Ru(II) complexes with a general formula [Ru(Spy)(bipy)(P-P)]PF6 [Spy = pyridine-6-thiolate; bipy = 2,2′-bipyridine; P-P = 1,2-bis(diphenylphosphine)ethane (1); 1,3-bis(diphenylphosphine) propane (2); and 1,1′-bis(diphenylphosphino)ferrocene] (4). Complex (3) with the 1,4-bis(diphenylphosphine)butane ligand, already known from the literature, was also synthesized, to be better studied here. The cytotoxicities of the complexes toward two kinds of cancerous cells (K562 and S-180 cells) were evaluated and compared to normal cells (L-929 and PBMC) by MTT assay. The complex [Ru(Spy)(bipy)(dppb)]PF6 (3) was selected to study both the cellular and molecular mechanisms underlying its promising anticancer action in S-180 cells. The results obtained from this study indicated that complex (3) induces cell cycle arrest in the G0/G1 phase in S-180 cells associated with a decrease in the number of cells in S phase. After 24 and 48 h of exposure to complex (3), the cell viability decreased when compared to the negative control. Complex (3) does not appear to be involved in the DNA damage, but induced changes in the mitochondrial membrane potential in S-180 cells. Furthermore, there was also an increase in the gene expression of Bax, Caspase 9, and Tp53. According to our results, complex (3) induces cell apoptosis through p53/Bax-dependent intrinsic pathway and suppresses the expression of active antiapoptotic Bcl-2 protein.  相似文献   

5.
Reaction of [Ru(2,2′-bipyridine)(2,2′:6′,2″-terpyridine)Cl]PF6 (abbreviated to [Ru(bipy)(terpy)Cl]PF6) with 0.5 equiv of the bidentate ligand L produces the dinuclear complexes [{Ru(bipy)(terpy)}2(μ-L)](PF6)4 (L = 4,4′-bipyridine 1, 1,4-diisocyanobenzene 2 and pyrazine 3) in moderate yields. Treating [Ru(bipy)(terpy)Cl]PF6 with equal molar of 1,4-diisocyanobenzene affords [Ru(bipy)(terpy)(CNC6H4NC)](PF6)2 (2a). These new complexes have been characterized by mass, NMR, and UV-Vis spectroscopy, and the structures of 1-3 determined by an X-ray diffraction study. Cyclic voltammetric studies suggest that metal communication between the two ruthenium ions increases from 1 to 2 to 3.  相似文献   

6.
7.
The reaction of [Ru(CO)2Cl2]n with bis(2-pyridylmethyl)amine (bpma) in refluxing ethanol followed by anion exchange yields two products: cis,fac-[Ru(bpma)(CO)2Cl]PF6 (1a, 71%) and trans,fac-[Ru(bpma)(CO)2Cl]PF6 (1b, 29%). Reaction of 1a with AgBF4 in acetone, followed by acetonitrile and then anion exchange gave cis,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2a). In the same way, 1b afforded trans,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2b). Reaction of depolymerized [Ru(CO)2Cl2]n with bpma in ethanol at room temperature afforded cis,cis-[Ru(η2-bpma)(CO)2Cl2] (3). In refluxing ethanol, 3 was converted to cis,fac-[Ru(bpma)(CO)2Cl]Cl (1a-Cl). Heating 3 in chlorobenzene afforded 1b-Cl, exclusively; heating 3 in ethylene glycol gave mainly 1a-Cl. Heating 1a-Cl in ethanol resulted in no isomerization, but heating in chlorobenzene gave a mixture of 3 and 1b-Cl. Anion exchange for PF6 with 1a-Cl and 1b-Cl afforded 1a and 1b, respectively, whereas anion exchange for BPh4 afforded 1a-BPh4. Compounds 1a, 1b, 2a and 3 have been structurally characterized.  相似文献   

8.
Exploring novel chemotherapeutic agents is a great challenge in cancer medicine. To that end, 2-substituted benzimidazole copper(II) complex, [Cu(BMA)Cl2]·(CH3OH) (1) [BMA = N,N′-bis(benzimidazol-2-yl-methyl)amine], was synthesized and its cytotoxicity was characterized. The interaction between complex 1 and calf thymus DNA was detected by spectroscopy methods. The binding constant (K b = 1.24 × 10M?1) and the apparent binding constant (K app = 6.67 × 10M?1) of 1 indicated its moderate DNA affinity. Complex 1 induced single strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. Cytotoxicity studies proved that complex 1 could inhibit the proliferation of human cervical carcinoma cell line HeLa in both time- and dose-dependent manners. The results of nuclei staining by Hoechst 33342 and alkaline single-cell gel electrophoresis proved that complex 1 caused cellular DNA damage in HeLa cells. Furthermore, treatment of HeLa cells with 1 resulted in S-phase arrest, loss of mitochondrial potential, and up-regulation of caspase-3 and -9 in HeLa cells, suggesting that complex 1 was capable of inducing apoptosis in cancer cells through the intrinsic mitochondrial pathway.  相似文献   

9.
The preparation and structural characterization of several new Ru(II) complexes in which four coordination positions are occupied by the sulfur atoms of a macrocycle, either 1,4,7,10-tetrathiacyclododecane ([12]aneS4) or 1,5,9,13-tetrathiacyclohexadecane ([16]aneS4), and the two others by relatively labile ligands (Cl, , H2O, dmso-S), are described:cis-[Ru([12]aneS4)(dmso-S)(H2O)](CF3SO3)2 (2a), cis-[Ru([12]aneS4)(dmso-S)(ONO2)](NO3) (2b), cis-[Ru([16]aneS4)Cl2] (4), and trans-[Ru([16]aneS4)(dmso-S)(H2O)](CF3SO3)2 (5).The complexes of the larger [16]aneS4 macrocycle have a flexible coordination geometry, either cis or trans, that makes them unsuited for being used as precursors in metal-driven self-assembly processes.On the contrary, the [12]aneS4 complexes cis-[Ru([12]aneS4)(dmso-S)Cl]Cl (1) and, above all, its chlorido free derivatives cis-[Ru([12]aneS4)(dmso-S)(H2O)](CF3SO3)2 (2a) and cis-[Ru([12]aneS4)(dmso-S)(ONO2)](NO3) (2b) are potential precursors of the geometrically stable 90° bis-acceptor fragment cis-[Ru([12]aneS4)]2+.Preliminary results of their reactivity towards the linear linker pyrazine (pyz) showed that the nature of the isolated product depends on that of the counter-anion.When treated with pyz 2b afforded the dinuclear complex [{Ru([12]aneS4)(ONO2)}2(μ-pyz)](NO3)2 (8), while 2a gave the molecular triangle [{cis-Ru([12]aneS4)(μ-pyz)}3](CF3SO3)6 (9), both in low yields.The X-ray structures of compounds 2a, 2b, 4, 5, [{Ru([12]aneS4)Cl}2(μ-pyz)]Cl2 (7), 9, and of the sandwich complex[Ru([12]aneS3-S)2](CF3SO3)2 (3), in which only three sulfur atoms of each macrocycle are bound to ruthenium, are also described.  相似文献   

10.
Ruthenium complexes containing pdon (pdon = 1,10-phenanthroline-5,6-dione) were synthesized. Their spectroscopic and electrochemical properties were examined. The molecular structure with [Ru(pdon)(bpy)2](ClO4)2 ([1](ClO4)2) (bpy = 2,2′-bipyridyl) was determined by single crystal X-ray diffraction. The optically transparent thin-layer electrochemical measurements confirm that the quinone form of [1](ClO4)2 is reduced to the semi-quinone state in acetonitrile (′ = −8 mV). Comparing the model complex, [1](ClO4)2, and metal-free pdon, the positive charge on two carbon atoms of the o-quinone group is bigger than that of metal-free pdon. The assemblies of the complexes were finally examined using ligand substitution.  相似文献   

11.
The gas phase molecular structure of a single isolated molecule of [Ag(Etnic)2NO3];1 where Etnic = Ethylnicotinate was calculated using B3LYP method. The H-bonding interaction between 1 with one (complex 2) and two (complex 3) water molecules together with the dimeric formula [Ag(Etnic)2NO3]2;4 and the tetrameric formula [Ag(Etnic)2NO3]4;5 were calculated using the same level of theory to model the effect of intermolecular interactions and molecular packing on the molecular structure of the titled complex. The H-bond dissociation energies of complexes 2 and 3 were calculated to be in the range of 12.220–14.253 and 30.106–31.055 kcal?mol?1, respectively, indicating the formation of relatively strong H-bonds between 1 and water molecules. The calculations predict bidentate nitrate ligand in the case of 1 and 2, leading to distorted tetrahedral geometry around the silver ion with longer Ag–O distances in case of 2 compared to 1, while 3 has a unidentate nitrate ligand leading to a distorted trigonal planar geometry. The packing of two [Ag(Etnic)2NO3] complex units; 4 does not affect the molecular geometry around Ag(I) ion compared to 1. In the case of 5, the two asymmetric units of the formula [Ag(Etnic)2NO3] differ in the bonding mode of the nitrate group, where the geometry around the silver ion is distorted tetrahedral in one unit and trigonal planar in the other. The calculations predicted almost no change in the charge densities at the different atomic sites except at the sites involved in the C–H?O interactions as well as at the coordinated nitrogen of the pyridine ring.
Figure
Molecular structure (left) and electrostatic potentials mapped on the electron density surface (right) calculated by DFT/B3LYP method for Etnic, and complexes 1 and 2  相似文献   

12.
The activity of homobimetallic ruthenium alkylidene complexes, [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(PCy3)] [Ru-I] and [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(IPr)] [Ru-II], on intermolecular [2+2+2] cyclotrimerisation reactions of monoynes has been investigated for the first time. It was found that these complexes can catalyse the chemo and regioselective cyclotrimerisation reactions of alkynes at both 25 and 50 °C in polar, aprotic solvents. The catalytic activity of [Ru-I] and [Ru-II] was compared to other well-known ruthenium catalysts such as Grubbs first generation catalyst [RuCl2(CHPh)(PCy3)2] [Ru-III], [RuCl(μ-Cl)(p-cymene)]2 [Ru-IV] and [RuCl2(p-cymene)PCy3] [Ru-V] complexes. To examine the effect of the steric hinderance of substrates on the regioselectivity of the reaction, a series of sterically hindered silicon containing alkynes (1a, 1b, 1c) were used. It was shown that the isomeric product distribution of the reaction shifts from 1,2,4-trisubstituted arenes to 1,3,5-trisubstituted arenes as the steric hinderance on the substrates increases. These homobimetallic ruthenium alkylidene complexes also catalysed regio- and chemo-selective cross-cyclotrimerisation reactions between silicon-containing alkynes (1a, 1b, 1c) and aliphatic alkynes (1d-g).  相似文献   

13.
14.
The 16-electron, coordinatively unsaturated, dicationic ruthenium complex [Ru(P(OH)2(OMe))(dppe)2][OTf]2 (1a) brings about the heterolysis of the C-H bond in phenylacetylene to afford the phenylacetylide complex trans-[Ru(CCPh)(P(OH)2(OMe))(dppe)2][OTf] (2). The phenylacetylide complex undergoes hydrogenation to give a ruthenium hydride complex trans-[Ru(H)(P(OH)2(OMe))(dppe)2][OTf] (3) and phenylacetylene via the addition of H2 across the Ru-C bond. The 16-electron complex also reacts with HSiCl3 quite vigorously to yield a chloride complex trans-[Ru(Cl)(P(OH)2(OMe))(dppe)2][OTf] (4). On the other hand, the other coordinatively unsaturated ruthenium complex [Ru(P(OH)3)(dppe)2][OTf]2 (1b) reacts with a base N-benzylideneaniline to afford a phosphonate complex [Ru(P(O)(OH)2)(dppe)2][OTf] (5) via the abstraction of one of the protons of the P(OH)3 ligand by the base. The phenylacetylide, chloride, and the phosphonate complexes have been structurally characterized. The phosphonate complex reacts with H2 to afford the corresponding dihydrogen complex trans-[Ru(η2-H2)(P(O)(OH)2)(dppe)2][OTf] (5-H2). The intact nature of the H-H bond in this species was established using variable temperature 1H spin-lattice relaxation time measurements and the observation of a significant J(H,D) coupling in the HD isotopomer trans-[Ru(η2-HD)(P(O)(OH)2)(dppe)2][OTf] (5-HD).  相似文献   

15.
Mössbauer studies of [{μ-S(CH2C(CH3)2CH2S}(μ-CO)FeIIFeI(PMe3)2(CO)3]PF6 (1 OX ), a model complex for the oxidized state of the [FeFe] hydrogenases, and the parent FeIFeI derivative are reported. The paramagnetic 1 OX is part of a series featuring a dimethylpropanedithiolate bridge, introducing steric hindrance with profound impact on the electronic structure of the diiron complex. Well-resolved spectra of 1 OX allow determination of the magnetic hyperfine couplings for the low-spin distal FeI ( $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I ) site, A x,y,z  = [?24 (6), ?12 (2), 20 (2)] MHz, and the detection of significant internal fields (approximately 2.3 T) at the low-spin ferrous site, confirmed by density functional theory (DFT) calculations. Mössbauer spectra of 1 OX show nonequivalent sites and no evidence of delocalization up to 200 K. Insight from the experimental hyperfine tensors of the FeI site is used in correlation with DFT to reveal the spatial distribution of metal orbitals. The Fe–Fe bond in [Fe2{μ-S(CH2C(CH3)2CH2S}(PMe3)2(CO)4] (1) involving two $ d_{{z^{2} }} $ d z 2 -type orbitals is crucial in keeping the structure intact in the presence of strain. On oxidation, the distal iron site is not restricted by the Fe–Fe bond, and thus the more stable isomer results from inversion of the square pyramid, rotating the $ d_{{z^{2} }} $ d z 2 orbital of $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I . DFT calculations imply that the Mössbauer properties can be traced to this $ d_{{z^{2} }} $ d z 2 orbital. The structure of the magnetic hyperfine coupling tensor, A, of the low-spin FeI in 1 OX is discussed in the context of the known A tensors for the oxidized states of the [FeFe] hydrogenases.  相似文献   

16.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

17.
Treatment of [Cp*RuCl2]x (Cp* = η5-C5Me5) with K[N(Ph2PS)2] afforded [Cp*Ru{N(Ph2PS)2}Cl] (1). Reduction of 1 with Li[BEt3H] gave the 16-electron half-sandwich Ru(II) complex [Cp*Ru{N(Ph2PS)2}] (2). Complexes 1 and 2 have been characterized by X-ray crystallography. The Ru-Cp*(centroid) and average Ru-S distances in 1 are 1.827 and 2.3833(5) Å, respectively. The corresponding bond distances in 2 are 1.739 and 2.379(1) Å. Treatment of 2 with 2-electron ligands L afforded the adducts [Cp*Ru{N(Ph2PS)2}L] (L = CO (3), 2,6-Me2C6H4NC (4), MeCO2CCCO2Me (5)). Oxidation of 2 with tetramethylthiuram disulfide gave the Ru(IV) complex [Cp*Ru{S2CNMe2}2][N(Ph2PS)2] (6). The Ru-Cp*(centroid) and average Ru-S distances in 6 are 1.897 and 2.387(1) Å, respectively.  相似文献   

18.
Cu(I)-mediated [3+2]cycloaddition between azides and alkynes has evolved into a valuable bioconjugation tool in radiopharmaceutical chemistry. We have developed a simple, convenient and reliable radiosynthesis of 4-[18F]fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([ 18 F]F-SA) as a novel aromatic sulfonamide-based click chemistry building block. [ 18 F]F-SA could be prepared in a remotely controlled synthesis unit in 32 ± 5 % decay-corrected radiochemical yield in a total synthesis time of 80 min. The determined lipophilicity of [ 18 F]F-SA (logP = 1.7) allows handling of the radiotracer in aqueous solutions. The versatility of [ 18 F]F-SA as click chemistry building block was demonstrated by the labeling of a model peptide (phosphopeptide), protein (HSA), and oligonucleotide (L-RNA). The obtained radiochemical yields were 77 % (phosphopeptide), 55–60 % (HSA), and 25 % (L-RNA), respectively. Despite the recent emergence of a multitude of highly innovative novel bioconjugation methods for 18F labeling of biopolymers, Cu(I)-mediated click chemistry with [ 18 F]F-SA represents a reliable, robust and efficient radiolabeling technique for peptides, proteins, and oligonucleotides with the short-lived positron emitter 18F.  相似文献   

19.
Treatment of the 16-electron hydroxy hydride complex [Ru(IMes)2(CO)H(OH)] (1, IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene) with HCCR affords the alkynyl species [Ru(IMes)2(CO)H(CCR)] (R = Ph 3, SiMe3, 4) and [Ru(IMes)2(CO)(CCR)2] (R = Ph, 5). Deuterium labelling studies show that the mono-alkynyl complexes are formed via hydrogen transfer from a coordinated alkyne ligand to Ru-OH, while bis-alkynyl formation is proposed to take place through hydrogen transfer to Ru-H. Both 3 and 5 readily coordinate CO to give the corresponding dicarbonyl species 6 and 7. Addition of HCCPh to the hydride chloride precursor [Ru(IMes)2(CO)HCl] (2) results in a different reaction pathway involving alkyne insertion into the Ru-H bond to yield the alkenyl chloride complex [Ru(IMes)2(CO)(CHCHPh)Cl] 8. Complexes 3-8 have been structurally characterised by X-ray crystallography.  相似文献   

20.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号