首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection and transport of objects to use as tools at a distant site are considered to reflect planning. Ancestral humans transported tools and tool-making materials as well as food items. Wild chimpanzees also transport selected hammer tools and nuts to anvil sites. To date, we had no other examples of selection and transport of stone tools among wild nonhuman primates. Wild bearded capuchins (Cebus libidinosus) in Boa Vista (Piauí, Brazil) routinely crack open palm nuts and other physically well-protected foods on level surfaces (anvils) using stones (hammers) as percussive tools. Here we present indirect evidence, obtained by a transect census, that stones suitable for use as hammers are rare (study 1) and behavioral evidence of hammer transport by twelve capuchins (study 2). To crack palm nuts, adults transported heavier and harder stones than to crack other less resistant food items. These findings show that wild capuchin monkeys selectively transport stones of appropriate size and hardness to use as hammers, thus exhibiting, like chimpanzees and humans, planning in tool-use activities.  相似文献   

2.
Capuchins living in Boa Vista (Piauì, Brazil) crack open hard palm nuts on hard, level surfaces (anvils) using stones (hammers) as percussive tools. This activity leaves diagnostic physical remains: distinctive shallow depressions (pits) on the surface of the anvil, cracked shells, and stone hammers on the anvil. To initiate comparison of percussive stone tool use and interpretation of the artifacts it produces across capuchins, chimpanzees, and hominins, we describe a sample of the anvils and hammer stones used by capuchin monkeys at our site. Anvils (boulders and logs) were located predominantly in the transition zone between the flat open woodland and ridges, in locations that offered some overhead coverage, and with a tree nearby, but not necessarily near palm trees. Anvils contained shallow, hemispherical pits with smooth interiors. Hammers represent a diverse assemblage of ancient rocks that are much harder than the prevailing sedimentary rock out of which they eroded. Hard stones large enough to serve as hammers were more abundant on the anvils than in the surrounding area, indicating that capuchins transport them to the anvils. Capuchins use hammers weighing on average more than 1 kg, a weight that is equivalent to 25-40% of the average body weight for adult males and females. Our findings indicate that capuchins select stones to use as hammers and transport stones and nuts to anvil sites. Wild capuchins provide a new reference point for interpreting early percussive stone tool use in hominins, and a point of comparison with chimpanzees cracking nuts.  相似文献   

3.
Tool use in humans can be optional, that is, the same person can use different tools or no tool to achieve a given goal. Strategies to reach the same goal may differ across individuals and cultures and at the intra‐individual level. This is the first experimental study at the intra‐individual level on the optional use of a tool in wild nonhuman primates. We investigated optional tool use by wild bearded capuchins (Sapajus libidinosus) of Fazenda Boa Vista (FBV; Piauí, Brazil). These monkeys habitually succeed in cracking open the mesocarp of dry cashew nuts (Anacardium spp.) by pounding them with stones and/or by biting. We assessed whether availability of a stone and resistance of the nut affected capuchins' choice to pound or to bite the nuts and their rates of success. Sixteen capuchins (1–16 years) received small and large dry cashew nuts by an anvil together with a stone (Stone condition) or without a stone (No‐Stone condition). In the Stone conditions, subjects used it to crack the nut in 89.1% (large nuts) and 90.1% (small nut) of the trials. Nut size significantly affected the number of strikes used to open it. Availability of the stone significantly increased the average percent of success. In the No‐Stone conditions, monkeys searched for and used other percussors to crack the nuts in 54% of trials. In all conditions, age affects percentage of success and number of strikes to reach success. We argue that exclusive use of stones in other sites may be due to the higher abundance of stones at these sites compared with FBV. Since capuchins opened cashews with a tool 1–2 years earlier than they succeed at cracking more resistant palm nuts, we suggest that success at opening cashew nuts with percussors may support the monkeys' persistent efforts to crack palm nuts.  相似文献   

4.
We conducted an exploratory investigation in an area where nut-cracking by wild capuchin monkeys is common knowledge among local residents. In addition to observing male and female capuchin monkeys using stones to pound open nuts on stone "anvils," we surveyed the surrounding area and found physical evidence that monkeys cracked nuts on rock outcrops, boulders, and logs (collectively termed anvils). Anvils, which were identified by numerous shallow depressions on the upper surface, the presence of palm shells and debris, and the presence of loose stones of an appropriate size to pound nuts, were present even on the tops of mesas. The stones used to crack nuts can weigh >1 kg, and are remarkably heavy for monkeys that weigh <4 kg. The abundance of shell remains and depressions in the anvil surface at numerous anvil sites indicate that nut-cracking activity is common and long-enduring. Many of the stones found on anvils (presumably used to pound nuts) are river pebbles that are not present in the local area we surveyed (except on or near the anvils); therefore, we surmise that they were transported to the anvil sites. Ecologically and behaviorally, nut-cracking by capuchins appears to have strong parallels to nut-cracking by wild chimpanzees. The presence of abundant anvil sites, limited alternative food resources, abundance of palms, and the habit of the palms in this region to produce fruit at ground level all likely contribute to the monkeys' routine exploitation of palm nuts via cracking them with stones. This discovery provides a new reference point for discussions regarding the evolution of tool use and material culture in primates. Routine tool use to exploit keystone food resources is not restricted to living great apes and ancestral hominids.  相似文献   

5.
Chimpanzees have been the traditional referential models for investigating human evolution and stone tool use by hominins. We enlarge this comparative scenario by describing normative use of hammer stones and anvils in two wild groups of bearded capuchin monkeys (Cebus libidinosus) over one year. We found that most of the individuals habitually use stones and anvils to crack nuts and other encased food items. Further, we found that in adults (1) males use stone tools more frequently than females, (2) males crack high resistance nuts more frequently than females, (3) efficiency at opening a food by percussive tool use varies according to the resistance of the encased food, (4) heavier individuals are more efficient at cracking high resistant nuts than smaller individuals, and (5) to crack open encased foods, both sexes select hammer stones on the basis of material and weight. These findings confirm and extend previous experimental evidence concerning tool selectivity in wild capuchin monkeys ( [Visalberghi et?al., 2009b] and [Fragaszy et?al., 2010b]).Male capuchins use tools more frequently than females and body mass is the best predictor of efficiency, but the sexes do not differ in terms of efficiency. We argue that the contrasting pattern of sex differences in capuchins compared with chimpanzees, in which females use tools more frequently and more skillfully than males, may have arisen from the degree of sexual dimorphism in body size of the two species, which is larger in capuchins than in chimpanzees. Our findings show the importance of taking sex and body mass into account as separate variables to assess their role in tool use.  相似文献   

6.
Capuchin monkeys (Sapajus spp.) are proficient tool users, and the use of stone tools occurs in several populations, mostly to crack open encased foods. Two well-studied Brazilian populations of Sapajus libidinosus inhabit Fazenda Boa Vista and Serra da Capivara National Park and present different behavioral sets regarding tool use. Serra das Confusões National Park (SCoNP) lies between those sites, but little is known about the capuchin monkey population that lives there. To begin unraveling the capuchin behavior in this area, we conducted a brief survey for tool use sites. We found indirect evidence that capuchin monkeys at SCoNP use stone hammers to crack open at least four species of seeds and fruits. Plant reproductive parts there are processed with stone tools in a similar pattern to the other sites. Further study is needed to directly observe tool use by capuchin monkeys at SCoNP, verify the occurrence of other possible types of tool use in this population, and thus fully compare their tool use repertoire to that of other populations.  相似文献   

7.
Changes in land use in recent decades have caused substantial biodiversity loss. Some authors suggest that animal cultures could be threatened by human pressure. The tradition of nut-cracking has been thoroughly studied since 2005 in the capuchin monkeys (S. libidinosus) of Fazenda Boa Vista (FBV). Despite being a relatively well-preserved area, the advance of intensive monocultures in the proximity of FBV, among other factors, may have affected the environmental features of the region. In this contribution we investigated the hypothesis that the tradition of nut-cracking using stone tools by bearded capuchin monkeys at FBV is threatened by the rapid transformation of the habitat. We analyzed longitudinal climatic data (mean maximum and minimum temperature and mean maximum and minimum humidity) from 2006 to 2020, and data from the periods 2006–2010 and 2015–2020 for the variables related to nut-cracking: availability of palm trees bearing fruits, ground use and consumption of palm nuts by the monkeys. We show an increase in maximum temperature and a decrease in minimum temperature and minimum humidity over the study years. There was a sharp drop in the number of fruiting palm trees per hectare between the two study periods and a decrease in the time that monkeys spent on the ground, eating palm nuts, and nut-cracking with tools. We confirmed the hypothesis that the tradition of using tools in feeding is threatened. Our results show that in less than two decades, habitat anthropization already negatively impacts animal cultures. We emphasize the importance of considering behavioral diversity in conservation criteria.  相似文献   

8.
Humans can use hand tools smoothly and effectively in varying circumstances; in other words, skillfully. A few other species of primates crack encased foods using hammer tools and anvils. Are they skilled? Positioning the food on the anvil so that it does not fall off when struck is a component of skilled cracking. We discovered that bearded capuchin monkeys deliberately place palm nuts in a relatively stable position on the anvil before striking them. In the first experiment, we marked the meridians of palm nuts where they stopped when rolled on a flat surface (“Stop meridian”). We videotaped monkeys as they cracked these nuts on an anvil. In playback we coded the position of the Stop meridian prior to each strike. Monkeys typically knocked the nuts on the anvil a few times before releasing them in a pit. They positioned the nuts so that the Stop meridian was within 30 degrees of vertical with respect to gravity more often than expected, and the nuts rarely moved after the monkeys released them. In the second experiment, 14 blindfolded people (7 men) asked to position marked nuts on an anvil as if to crack them reliably placed them with the Stop meridian in the same position as the monkeys did. In the third experiment, two people judged that palm nuts are most bilaterally symmetric along a meridian on, or close to, the Stop meridian. Thus the monkeys reliably placed the more symmetrical side of the nuts against the side of the pit, and the nuts reliably remained stationary when released. Monkeys apparently used information gained from knocking the nut to achieve this position. Thus, monkeys place the nuts skillfully, strategically managing the fit between the variable nuts and pits in the anvil, and skilled placement depends upon information generated by manual action.  相似文献   

9.
We recorded the damage that wild bearded capuchin monkeys (Sapajus libidinosus) caused to a sandstone anvil during pounding stone tool use, in an experimental setting. The anvil was undamaged when set up at the Fazenda Boa Vista (FBV) field laboratory in Piauí, Brazil, and subsequently the monkeys indirectly created a series of pits and destroyed the anvil surface by cracking palm nuts on it. We measured the size and rate of pit formation, and recorded when adult and immature monkeys removed loose material from the anvil surface. We found that new pits were formed with approximately every 10 nuts cracked, (corresponding to an average of 38 strikes with a stone tool), and that adult males were the primary initiators of new pit positions on the anvil. Whole nuts were preferentially placed within pits for cracking, and partially-broken nuts outside the established pits. Visible anvil damage was rapid, occurring within a day of the anvil''s introduction to the field laboratory. Destruction of the anvil through use has continued for three years since the experiment, resulting in both a pitted surface and a surrounding archaeological debris field that replicate features seen at natural FBV anvils.  相似文献   

10.
We conducted an experiment to examine the effect of substrate on the nut-cracking behavior of a group of semicaptive capuchin monkeys. We wanted to determine whether tufted capuchin monkeys were selective in choosing the substrate on which they pound nuts, and whether the choice of substrate affected the outcome. Eight adult females and eight juveniles were provided with nuts in the outdoor facility. We found that 1) all adult females and three young capuchins succeeded in cracking nuts; 2) they preferred the hardest substrates (concrete and stone); 3) there is a link between the substrate and the amount of time needed to crack a nut; 4) most young capuchins used various substrates, some of which were inadequate, in a haphazard manner; and 5) there are different forms of nut cracking. We conclude that adult capuchins choose the hardest substrates, and that these substrates support efficient cracking.  相似文献   

11.
Wild bearded capuchin monkeys (Sapajus libidinosus) habitually use stone hammers to crack open palm nuts and seeds on anvils. This activity requires strength, balance, and precise movement of a large stone with respect to the item placed on an anvil. We explored how well young monkeys cope with these challenges by examining their behavior and the behavior of adults while they cracked palm nuts using a stone. Using video records, we compared actions of six juvenile (2–5 years) and six adult (7+ years) wild monkeys during their first 20 strikes with one unfamiliar ellipsoid, quartzite stone (540 g), and the outcomes of these strikes. Compared with adults, juveniles cracked fewer nuts, performed a more diverse set of exploratory actions, and less frequently placed one or both hands on top of the stone on the downward motion. Adults and juveniles displayed similar low frequencies of striking with a slanted trajectory, missing the nut, and losing control over the nut or stone after striking. These findings indicate that young monkeys control the trajectory of a stone adequately but that is not sufficient to crack nuts as effectively as adults do. Compared with juveniles, adults more quickly perceive how to grip the stone efficiently, and they are able to adjust their grip dynamically during the strike. Young monkeys develop expertise in the latter aspects of cracking nuts over the course of several years of regular practice, indicating that perceptual learning about these aspects of percussion occurs slowly. Juvenile and adult humans learning to use stones to crack nuts also master these features of cracking nuts very slowly.  相似文献   

12.
Carrion scavenging is a well‐studied phenomenon, but virtually nothing is known about scavenging on plant material, especially on remnants of cracked nuts. Just like meat, the insides of hard‐shelled nuts are high in energetic value, and both foods are difficult to acquire. In the Taï forest, chimpanzees (Pan troglodytes) and red river hogs (Potamochoerus porcus) crack nuts by using tools or strong jaws, respectively. In this study, previously collected non‐invasive camera trap data were used to investigate scavenging by sooty mangabeys (Cercocebus atys), two species of Guinea fowl (Agelestres meleagrides; Guttera verreauxi), and squirrels (Scrunidae spp.) on the nut remnants cracked by chimpanzees and red river hogs. We investigated how scavengers located nut remnants, by analyzing their visiting behavior in relation to known nut‐cracking events. Furthermore, since mangabeys are infrequently preyed upon by chimpanzees, we investigated whether they perceive an increase in predation risk when approaching nut remnants. In total, 190 nut‐cracking events were observed in four different areas of Taï National Park, Ivory Coast. We could confirm that mangabeys scavenged on the nuts cracked by chimpanzees and hogs and that this enabled them to access food source that would not be accessible otherwise. We furthermore found that mangabeys, but not the other species, were more likely to visit nut‐cracking sites after nut‐cracking activities than before, and discuss the potential strategies that the monkeys could have used to locate nut remnants. In addition, mangabeys showed elevated levels of vigilance at the chimpanzee nut‐cracking sites compared with other foraging sites, suggesting that they perceived elevated danger at these sites. Scavenging on remnants of cracked nuts is a hitherto understudied type of foraging behavior that could be widespread in nature and increases the complexity of community ecology in tropical rainforests.  相似文献   

13.
Percussive tool use holds special interest for scientists concerned with human origins. We summarize the findings from two field sites, Taï and Fazenda Boa Vista, where percussive tool use by chimpanzees and bearded capuchins, respectively, has been extensively investigated. We describe the ecological settings in which nut-cracking occurs and focus on four aspects of nut-cracking that have important cognitive implications, namely selection of tools, tool transport, tool modification and modulation of actions to reach the goal of cracking the nut. We comment on similarities and differences in behaviour and consider whether the observed differences reflect ecological, morphological, social and/or cognitive factors. Both species are sensitive to physical properties of tools, adjust their selection of hammers conditionally to the resistance of the nuts and to transport distance, and modulate the energy of their strikes under some conditions. However, chimpanzees transport hammers more frequently and for longer distances, take into account a higher number of combinations of variables and occasionally intentionally modify tools. A parsimonious interpretation of our findings is that morphological, ecological and social factors account for the observed differences. Confirmation of plausible cognitive differences in nut-cracking requires data not yet available.  相似文献   

14.
Among primates, only chimpanzees and orang-utans are credited with customary tool use in nature. Among monkeys, capuchins stand out with respect to the number of accounts of tool use. However, the majority of capuchin tool use observations reported in nature is anecdotal or idiosyncratic. In this report, we documented the stone pounding of dry fruits (Hymenea courbaril and Acrocomia aculeata) in two wild free-ranging groups of Cebus libidinosus in the Brasilia National Park, a preserved area representative of the Cerradobiome of Central Brazil. In 2004, we noted 2 episodes at which 4 monkeys used stones to crack open nuts. In 2005, we recorded 5 pounding episodes involving 2 different monkeys. Observations of tool use over the course of 2 consecutive years by some individuals, as well as other indirect evidence, indicate that this behaviour could be habitual in the studied groups. We propose that the probability of the emergence of the use of pounding stones as tools may be dependent on the ecological variables that influence the degree of terrestriality and extractive foraging and the complex interaction of these factors.  相似文献   

15.
This paper summarizes early anecdotal information and systematic studies of tool use in capuchin monkeys (Cebus spp.). Tool use in capuchins is neither context specific nor stereotyped. The success of capuchins in using tools and in exploiting a variety of food resources in the wild derives from several factors: their manipulative abilities, interest in external objects and a tendency to explore the environment. In using tools, capuchins are similar to apes and more proficient than other monkey species. A cognitive approach indicates, however, that (in contrast with chimpanzees) they never develop an understanding of the requirements of the tool tasks presented.  相似文献   

16.
Complex and flexible food processing was a key element for the evolutionary success of hominins, enlarging the range of exploitable foods while enabling occupation of new habitats. Only a few primate species crack open encased food by using percussive tools and/or avoid physical contact with irritant compounds by removing the structures containing them. We describe, for the first time, how a population of bearded capuchin monkeys (Sapajus libidinosus) accesses the nutritious kernel of cashew nuts avoiding the caustic chemicals protecting it. Two processing strategies, namely rubbing/piercing and stone tool use, are used according to maturity of the nuts. The frequency of cashew nuts processing increases with capuchin age, and the same set of processing strategies appears to be absent in other capuchin populations, making cashew nuts processing an excellent candidate for social transmission. Am. J. Primatol. 75:387‐393, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Capuchin monkeys (Cebus sp.) are notable among New World monkeys for their widespread use of tools. Like chimpanzees, they use both hammer tools and insertion tools in the wild to acquire food that would be unobtainable otherwise. Recent evidence indicates that capuchins transport stones to anvil sites and use the most functionally efficient stones to crack nuts. We further investigated capuchins’ assessment of functionality by testing their ability to select a tool that was appropriate for two different tool‐use tasks: A stone for a hammer task and a stick for an insertion task. To select the appropriate tools, the monkeys investigated a baited tool‐use apparatus (insertion or hammer), traveled to a location in their enclosure where they could no longer see the apparatus, made a selection between two tools (stick or stone), and then could transport the tool back to the apparatus to obtain a walnut. We incorporated tool transport and the lack of a visual cue into the design to assess willingness to transport the tools and the monkeys’ memory for the proper tool. Six brown capuchins (Cebus apella) were first trained to select and use the appropriate tool for each apparatus. Four animals completed training and were then tested by allowing them to view a baited apparatus and then travel to a location 8 m distant where they could select a tool while out of view of the apparatus. All four monkeys chose the correct tool significantly more than expected and transported the tools back to the apparatus. Results confirm capuchins’ propensity for transporting tools, demonstrate their capacity to select the functionally appropriate tool for two different tool‐use tasks, and indicate that they can retain the memory of the correct choice during a travel time of several seconds.  相似文献   

18.
Two types of use of “hammers” for cracking nuts by wild-living chimpanzees have been distinguished: (1) Relatively small stones are used by the chimpanzee community at Bossou in Guinea to crack the nuts of oil palms growing on abandoned farmland, while no nuts of wild tree species are cracked. (2) Larger hammer stones (and, at some sites, wooden clubs) are used in a more sophisticated manner to crack the nuts of wild trees, but not of oil palms, in an area ranging from south-east Sierra Leone through Liberia to the south-west of the Ivory Coast. The first author (1986) has proposed that Type I has been copied by the chimpanzees, under pressure of food shortage, from the local human population. New data now indicate that, at Bossou, while habitat deterioration has continued, the number of hammer and anvil stones per utilized oil palm tree has approximately tripled in the last six years. The quantity of food obtained from oil palm nut kernels, however, amounts to only a few percent of the total diet. For the rest these apes depend to a large extent on many other agricultural products cultivated at Bossou which they are allowed freely to consume, including even cassava (manioc) roots and sweet potatoes dug by them from the ground. Some factors determining the chosen size of hammers were analyzed. Two abnormal hammers were found whose wear suggested a tentative, human-like manner of use. No evidence has been found to indicate the use of stone tools by chimpanzees in the adjoining chimpanzee-inhabited areas around the range of the Bossou community. Type II stone tool use was found, however, in a primary forest on a mountain≈13 km west of Bossou. This is especially intriguing because the site is separated by a wide belt of drier rain forest from the belt of very humid rain forest in the south where all the other known Type II sites are located. More research on the geographical distribution of the use of stone tools by chimpanzees and on the underlying ecological factors is recommended.  相似文献   

19.
The purpose of this study was to examine the use of a tool-set by capuchin monkeys (Cebus apella). Capuchins were presented with an apparatus designed to accommodate the use of pounding tools to crack walnuts and the use of probing tools to loosen and extract the inner meat. Three capuchins used stones and sticks sequentially for these purposes. The capuchins' behavior was similar in form and function to behavior that has been reported for chimpanzees in analogous situations. These results provide further evidence of the extensive tool-using capabilities of capuchin monkeys and are consistent with a hypothesis of cross-species continuity in the skillful use of tools by primates.  相似文献   

20.
The purpose of this study was to examine the hierarchical complexity of combinatorial manipulation in capuchin monkeys (Cebus apella). Two experiments were conducted. In Experiment 1 capuchins were presented with an apparatus designed to accommodate the use of probing tools. In Experiment 2 the same capuchins were presented with sets of nesting containers. Five of the ten subjects used probing tools and seven subjects placed objects in the containers. The capuchins' behavior reflected three hierarchically organized combinatorial patterns displayed by chimpanzees and human infants. Although the capuchins sometimes displayed the two more complex patterns (“pot” and “subassembly”), their combinatorial behavior was dominated by the simplest pattern (“pairing”). In this regard capuchins may not attain the same grammar of manipulative action that has been reported for chimpanzees and young human children. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号