首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Aim We examine how two categories of non‐native species (archaeophyte and neophyte, introduced before and after ad 1500, respectively) have had different impacts on β diversity across European urban floras. Our goal is to use the unique biological perspective provided by urban areas, and the contrasting historical and geographical perspectives provided by archaeophytes and neophytes, to infer how non‐native species will impact upon β diversity in the future. Location Twenty‐two urban areas located in seven European countries. Methods We used the β‐sim dissimilarity index to estimate the level of β diversity for 231 unique pair‐wise combinations of 22 urban floras. We examined bivariate plots of dissimilarity by geographical separation of city centres to evaluate distance decay of similarity for native species, archaeophytes and neophytes. Results Based on average percentages, 52.8% (SD = 8.2%) of species in the urban floras were identified as non‐native with 28.3% (SD = 6.9%) classified as neophytes and 24.5% (SD = 4.9%) as archaeophytes. Relative to native species, across urban floras, archaeophytes were associated with higher compositional similarity and weaker distance decay patterns, whereas neophytes were associated with lower compositional similarity and stronger distance decay patterns. Main conclusions Across European urban floras, archaeophytes and neophytes occurred in similar numbers but archaeophytes were consistently associated with lower β diversity and neophytes with higher β diversity. Thus, the impact of non‐native species on β diversity can be determined, at least in part, through their historical and geographical associations with anthropogenic activities. If archaeophytes represent the long‐term biogeographical outcome for human commensal species, neophytes could develop similar patterns. The consequences, however, are likely to be more substantial ecologically and geographically due to the increasing numbers of neophytes and their global anthropogenic associations. Nevertheless, at present, our findings suggest that, based on occurrence information, neophytes have not achieved this state with European urban floras retaining regionally distinct assemblages of neophytes.  相似文献   

2.
Anthropogenic activities have weakened biogeographical barriers to dispersal resulting in the global spread and establishment of an increasing number of non‐native species. We examine the broad‐scale consequences of this phenomenon based on an analysis of compositional similarity across urban floras in the northeastern United States and Europe. We test the prediction that homogenization of species composition is uniquely defined within vs. between continents based on the time and place of origin of non‐native species. In this case, for archaeophytes and neophytes in Europe (introduced before and after ad 1500, respectively) and non‐native species originating from within and outside the United States. More species in urban floras were shared within than between continents. Within Europe, archaeophytes shared more species across urban floras compared with neophytes; strong associations were not observed for non‐native species across US urban floras. Between the two continents, non‐native species in the United States that originated from outside the United States shared species primarily with archaeophytes but also with European natives and neophytes. These results suggest that the direction of biotic interchange was unidirectional with species moving primarily from Europe to the United States with archaeophytes playing a primary and non‐native species originating from outside the two continents a secondary role as a homogenizing source. Archaeophytes, based on combination of biogeographical, evolutionary, and ecological factors in association with a long history of anthropogenic influence, appear to have played a prominent role in the continental and intercontinental homogenization of species composition. This suggests that the uniform homogenization of the Earth's biota is not imminent and is presently directed by a combination of biogeographically defined anthropogenic and historical factors.  相似文献   

3.
Question: Which factors determine diversity of native and alien vascular plant species in semi‐natural dry grasslands? Location: Northern limestone Alps to the southern rim of the Bohemian massif in northern Austria. Methods: In 70 randomly chosen dry grassland patches (0.008 ha ‐ 7 ha) we sampled a complete inventory of vascular plant species at each site. We analysed the correlation between species diversity of natives, archaeophytes (pre‐1500 aliens) and neophytes (post‐1500 aliens). We used GLM to study the relationship of species number (natives, neophytes, archaeophytes) to five explanatory variables (altitude, within habitat diversity, habitat diversity of adjacent areas, within land‐use diversity and land‐use in adjacent areas). Orthogonal components of these variables were derived with a PCA and used in the models. We also tested the influence of minimum residence time (MRT) and the covariables origin, mode of introduction and life form on the number of grassland sites with neophytes with analogous GLMs. Results: Native species diversity species was positively correlated with the species diversity of new, but not old invaders. GLM explains 70% of the variance in the number of native species. Patch size explained the largest part of the variation in the number of native species. PCA axes 1 and 3 were significantly related to the number of native species. Axis 1was related to on‐site habitat and land‐use diversity. The GLM of the archaeophyte diversity explains 18% of the variance. Altitude and presence of fields and grassland in the neighbourhood mainly explained archaeophyte species diversity. The GLM of neophyte diversity explains 12% of the variance. The number of neophytes was positively related to that of archaeophytes. Only PCA axis 3, which is mainly influenced by adjacent land‐use types, showed a relationship with neophytes. MRT, mode of introduction and region of origin (but not life form) were significantly related to the number of grassland sites invaded by neophytes, explaining 35% of the variance. Conclusion: Most factors governing native species diversity are not significantly related to alien species diversity. Additional determinants of the local scale diversity of alien species exist such as region of origin and historical factors (MRT, mode of introduction).  相似文献   

4.
Factors determining the invasibility of different types of anthropogenic vegetation were studied in the Czech Republic. A data set of 3420 vegetation plots recorded between 1945 and 2005, containing 913 species, was used. A set of climatic variables (mean annual temperature and precipitation, together with elevation), propagule pressure (substituted by human population density) and local habitat conditions (substituted by values of CSR life strategies and Ellenberg indicator values of native species) was obtained for each plot. All species were classified as native, archaeophytes (i.e. alien species introduced before 1500), and neophytes (i.e. aliens introduced after 1500) and their relative proportion was calculated for each plot. Regression tree models were used to determine the ecological characteristics of the most invasible man-made habitats in the Czech Republic. The plots contained on average 31.9% archaeophytes and 7.3% neophytes. Correlation between the proportions of archaeophytes and neophytes was positive and significant. Both archaeophytes and neophytes were found predominantly in strongly disturbed habitats with a high nutrient supply located at low elevations in warmer climatic areas of the Czech Republic. Archaeophytes are more influenced by local habitat conditions and preferentially colonize sunny and dry man-made habitats with higher soil reaction. Neophytes have no special preferences for local habitat conditions and their highest proportion was found mainly in disturbed habitats at low elevations. Our results show that for anthropogenic vegetation in the Czech Republic, ecological and habitat characteristics are more important factors for plant invasions than different land use in the surrounding area.  相似文献   

5.
The paper provides quantitative information on the occurrence of alien species in Central European cities and analyses factors determining the richness of alien and native floras in this habitat type. Data for 54 cities (25 Polish, 24 German, 4 Czech and 1 Austrian) were gathered, and the representation of archaeophytes (i.e. aliens introduced before 1500 ad ), neophytes (introduced after that date) and native species was expressed. In an average city there were 87.4 archaeophytes (15.2% of the city flora) and 172.4 neophytes (25.2%) giving a total of 259.7 for alien species (40.3%). The number of native species averaged 386.5. The numbers of species in each category of immigration status increased significantly with city size. For neophytes, the species-area relationship showed a higher slope (0.49) on log–log axes than for both archaeophytes (0.16) and native species (0.30). Not only the number, but also the relative contribution of neophytes to the total flora, increased with city size, indicating that neophytes are the group which are most closely associated with human activity. On the other hand, archaeophytes were better represented in smaller cities, as they were confined to rural environment. A step-wise multiple regression was used to test for environmental variables acting as significant predictors, and explained between 40 and 65% of variation in the species numbers for particular categories of immigration status, providing the best fit for neophytes. City size was the best predictor for each characteristic, except of the proportion of total aliens, where the percentage of explained variability was low (8.2%), with latitude being the only significant predictor. Temperature was another highly significant predictor for the number of archaeophytes and total aliens, reflecting the origin of aliens in warmer areas. There was an effect of region on some flora characteristics. Polish cities had significantly higher proportion of archaeophytes and of total aliens than German cities. It is concluded that the occurrence of native and alien species in urban floras follows rather different pattern.  相似文献   

6.
Aim To determine relative effects of habitat type, climate and spatial pattern on species richness and composition of native and alien plant assemblages in central European cities. Location Central Europe, Belgium and the Netherlands. Methods The diversity of native and alien flora was analysed in 32 cities. In each city, plant species were recorded in seven 1‐ha plots that represented seven urban habitat types with specific disturbance regimes. Plants were classified into native species, archaeophytes (introduced before ad 1500) and neophytes (introduced later). Two sets of explanatory variables were obtained for each city: climatic data and all‐scale spatial variables generated by analysis of principal coordinates of neighbour matrices. For each group of species, the effect of habitat type, climate and spatial variables on variation in species composition was determined by variation partitioning. Responses of individual plant species to climatic variables were tested using a set of binomial regression models. Effects of climatic variables on the proportion of alien species were determined by linear regression. Results In all cities, 562 native plant species, 188 archaeophytes and 386 neophytes were recorded. Proportions of alien species varied among urban habitats. The proportion of native species decreased with increasing range and mean annual temperature, and increased with increasing precipitation. In contrast, proportions of archaeophytes and neophytes increased with mean annual temperature. However, spatial pattern explained a larger proportion of variation in species composition of the urban flora than climate. Archaeophytes were more uniformly distributed across the studied cities than the native species and neophytes. Urban habitats rich in native species also tended to be rich in archaeophytes and neophytes. Main conclusions Species richness and composition of central European urban floras are significantly affected by urban habitat types, climate and spatial pattern. Native species, archaeophytes and neophytes differ in their response to these factors.  相似文献   

7.
We studied the anthropogenic vegetation of the Northwest Balkans in order to determine its susceptibility to invasion by alien plant species. We compiled a dataset of 3089 vegetation plots sampled between 1939 and 2009, recording a set of variables for each sample plot in order to determine which factors have the most effect on a habitat’s vulnerability to invaders. We calculated the proportion of native species, archaeophytes and neophytes for each plot. We used regression tree models to determine the site conditions of the most invaded anthropogenic habitats. The sample plots contained an average of 12.7% alien plant species, with a low proportion of archaeophytes (4.3%) and 8.4% neophytes. Local habitat conditions proved to have the largest effect, rather than climatic variables or propagule pressure. The proportion of archaeophytes follows a different pattern than that seen in central and northern Europe, indicating that macroecological factors are more important. Neophytes show a similar distribution to other European locations.  相似文献   

8.
It is debated whether alien plants in new environments benefit from being mycorrhizal and whether widely distributed natives and aliens differ in their associations with mycorrhizal fungi. Here, we compared whether species differing in their origin status, i.e. natives, archaeophytes (alien species introduced before the year 1500) and neophytes (introduced after the year 1500), and arbuscular mycorrhizal (AM) status (obligate, facultative, non‐mycorrhizal) differ in their area of occupancy in Germany (i.e. number of occupied grid cells, each ~130 km²). We used generalized linear models, incorporating main effects and up to three‐way interactions combining AM status, origin status and plant functional traits. The latter were chosen to describe the possible trade‐off in carbon allocation either towards the symbiosis or to other plant structures, such as storage organs (significant interactions involving traits were assumed to indicate the existence of such trade‐offs). AM status significantly explained the area of occupancy of natives and neophytes – with facultative mycorrhizal species occupying the largest area in both groups – but was less pronounced among archaeophytes. Archaeophytes may have reduced dependency on AM fungi, as they are generally agricultural weeds and the symbiosis potentially becomes obsolete for plants growing in habitats providing a steady provision of nutrients. Trait interactions between AM status and other functional traits were almost exclusively detected for neophytes. While facultative mycorrhizal neophytes benefit from trade‐offs with other traits related to high C cost in terms of area of occupancy, such trade‐offs were almost absent among natives. This indicates that natives and neophytes benefit differently from the symbiosis and suggests that native AM fungal partners might be less important for neophytic than for native plant species or that more time is required to establish similar relationships between neophytes and native fungal symbionts.  相似文献   

9.
Until now, analytical studies on European urban floras have mostly concentrated on the central and north‐western parts of the continent. In this paper, factors determining species richness of urban flora were studied for the city of Rome, Italy, based on a comprehensive floristic survey carried out between 1985 and 1994, and updated in 2005. All species were recorded in grid cells of 1.6 km2 and classified into native and alien (the latter divided into archaeophytes and neophytes). The grids were classified with respect to the prevailing habitat type, area available to vegetation, level of disturbance and geographical position within the city. Data were analysed using minimal adequate models. Total species number was determined by habitat and its interaction with position on the north‐west gradient; other variables explained much less variance. Holding other variables constant, the average species number per grid cell was highest in archaeological sites and parks, followed by woodlands and rivers, and grasslands and recent developments. Residential areas and the historical centre were poorest in species number. Towards the north of the city, species richness in corresponding habitats increases because of higher landscape heterogeneity and closer association with diaspore pools in the surroundings. Native species make up on average 84% of the total species numbers, and trends opposite to those for the total number of species were found for the proportional representation of aliens. The occurrence of alien and native species in the flora of Rome is driven by similar factors, but factors that increase representation of aliens decrease that of natives and vice versa. The representation of neophytes and native species in grid cells was easier to explain (74% of variation accounted for) than that of archaeophytes (27%); this result reflects that in terms of ecology and response to factors, archaeophytes take an intermediate position between native plants and neophytes. Proportional representation of neophytes decreased with increasing area available to vegetation, reflecting that semi‐natural vegetation is better developed where less fragmented.  相似文献   

10.
Aim Given that urban landscapes often act as a point of entry for many non‐native species and urban development continues to increase as the human population rapidly expands, an understanding of the interaction between urbanization and non‐native plant species is important both in the control of potentially invasive species and in the conservation of native biodiversity. We investigated the spatial and temporal relationship between urban land cover and the distribution of non‐native species in Britain using two floristic data sets collected at two different time periods: 1987–88 and 2003–04. Location UK. Methods Using floristic data collected by the Botanical Society of the British Isles in 1987–88 (Monitoring Scheme) and 2003–04 (Local Change) in conjunction with habitat data obtained from the Land Cover Map of the UK, we conducted multiple regression analyses both within and between years on both groups of species (natives, neophytes and archaeophytes) and individual species. Results Neophytes (alien species introduced after 1500) were very strongly associated with urban land cover in both time periods and do not appear to be spreading out of urban habitats into the wider countryside. Archaeophytes (alien species introduced before 1500), however, showed a strong association with urban habitats in the earlier 1988 data set but no longer showed this association in the 2004 data set. Analysis at the individual species level showed that a large percentage of alien plant species, particularly archaeophytes, were not strongly associated with urban land cover or were negatively associated with such habitats. Main conclusions Our results suggest that there has been a reduction in the urban association of archaeophytes that is likely to have resulted from the recovery of archaeophytes associated with non‐urban (especially arable) habitats, following their decline in mid‐20th century, rather than from the movement of aliens into the wider countryside from urban habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号