首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass spectrometric analysis of the immunodominant epitope region (273-284) of herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) showed a favoured fission at the Asp-Pro peptide bond. The fast atom bombardment collision induced dissociation (FAB-CID) study of closely related X-Pro peptides documented that neither the length nor the amino acid composition of the peptide has a significant influence on this preferential cleavage. At the same time the DP bond proved to be sensitive to acidic conditions in the course of peptide synthesis. These observations prompted us to compare the chemical and mass spectrometric stability of a new set of nonapeptides related to the 273-284 epitope region of gD, i.e. SALLEDPVG and SALLEXPVG peptides, where X = A, K, I, S, F, E or D, respectively. The chemical stability of these peptides during acidic hydrolysis was investigated by electrospray ionization mass spectrometry (ESI-MS) and the products were identified by ESI-MS and on-line high performance liquid chromatography-mass spectrometry (HPLC-MS). The mass spectrometric fragmentation and bond stability of the untreated peptide samples were also studied using ESI-MS and liquid secondary ion mass spectrometry (LSIMS). Both the chemical hydrolysis and the mass spectrometric fragmentation showed that the Asp-Pro bond could easily be cleaved, while the KP bond proved to be stable under both circumstances. On the other hand, the XP bond (X = A, I, S, F or E) fragmented easily under the mass spectrometric conditions, but was not sensitive to the acidolysis.  相似文献   

2.
F Hudecz 《Biologicals》2001,29(3-4):197-207
We have explored various approaches to modify the immunrecognition of linear peptides representing sequential or continuous topographic B-cell or T-cell epitopes. For these studies, epitopes from herpes simplex virus (HSV) glycoprotein D (gD) and from mucin 1 and mucin 2 glycoproteins or T-cell epitopes from 16 kDa and 38 kDa proteins of Mycobacterium tuberculosis were selected. To increase antigenicity and immunogenicity we have prepared cyclic and chimaeric peptide variants as well as epitope peptides with altered flanking regions and epitope-carrier conjugates containing multiple epitope copies.  相似文献   

3.
Applications of cysteine-insertion and thioether linkage approaches to the preparation of a number of bioactive peptide conjugates are reported. Peptides containing epitopes from (i) herpes simplex virus type 1 glycoprotein D, (ii) a specific N-terminal beta-amyloid epitope recognized by therapeutically active antibodies, and (iii) a GnRH-III peptide from sea lamprey with antitumour activity, were elongated with Cys residues and attached to a chloroacetylated tetratuftsin derivative carrier via a thioether linkage either directly, or by insertion of a spacer. The structures and molecular homogeneity of all the peptide conjugates were ascertained by HPLC, MALDI and electrospray mass spectrometry. The use of a spacer such as an oligoglycine or GFLG-tetrapeptide gave an increased yield in the conjugation reaction and enhanced reaction rates. In the formation of cysteinyl-thioether linkages, it was found that the position of flanking Cys residues markedly influenced the conjugation reaction and the formation of intermolecular epitope disulfide-dimers. C-terminal Cys residues gave thioether conjugates with significantly diminished epitope-dimerization, while Cys at the N-terminal caused rapid disulfide-dimerization, thereby preventing efficient conjugation.  相似文献   

4.
Synthetic oligopeptides comprising linear or continuous topographic B-cell epitope sequences of proteins might be considered as specific and small size antigens. It has been demonstrated that the strength and specificity of antibody binding could be altered by conjugation to macromolecules or by modification in the flanking regions. However, no systematic studies have been reported to describe the effect of different carrier macromolecules in epitope conjugates. To this end, the influence of carrier structure and topology on antibody recognition of attached epitope has been studied by comparing the antibody binding properties of a new set of conjugates with tetratuftsin analogue (H-[Thr-Lys-Pro-Lys-Gly](4)-NH(2), T20) sequential oligopeptide carrier (SOC(n)), branched chain polypeptide, poly[Lys(Ser(i)-DL-Ala(m))] (SAK), multiple antigenic peptide (MAP), and keyhole limpet hemocyanine (KLH). In these novel constructs, peptide (9)LKNleADPNRFRGKDL(22) ([Nle(11)]-9-22) representing an immunodominant B cell epitope of herpes simplex virus type 1 glycoprotein D (HSV-1 gD) was conjugated to polypeptides through a thioether or amide bond. Here we report on the preparation of sequential and polymeric polypeptides possessing chloroacetyl groups in multiple copies at the alpha- and/or epsilon-amino group of the polypeptides and its use for the conjugation of epitope peptides possessing Cys at C-terminal position. We have performed binding studies (direct and competitive ELISA) with monoclonal antibody (Mab) A16, recognizing the HSV gD-related epitope, [Nle(11)]-9-22, and conjugates containing identical and uniformly oriented epitope peptide in multiple copies attached to five different macromolecules as carrier. Data suggest that the chemical nature of the carrier and the degree of substitution have marked influence on the strength of antibody binding.  相似文献   

5.
The molecular characterization of the epitope repertoire on herpes simplex virus (HSV) antigens would greatly expand our knowledge of HSV immunity and improve immune interventions against herpesvirus infections. HSV glycoprotein D (gD) is an immunodominant viral coat protein and is considered an excellent vaccine candidate antigen. By using the TEPITOPE prediction algorithm, we have identified and characterized a total of 12 regions within the HSV type 1 (HSV-1) gD bearing potential CD4(+) T-cell epitopes, each 27 to 34 amino acids in length. Immunogenicity studies of the corresponding medium-sized peptides confirmed all previously known gD epitopes and additionally revealed four new immunodominant regions (gD(49-82), gD(146-179), gD(228-257), and gD(332-358)), each containing naturally processed epitopes. These epitopes elicited potent T-cell responses in mice of diverse major histocompatibility complex backgrounds. Each of the four new immunodominant peptide epitopes generated strong CD4(+) Th1 T cells that were biologically active against HSV-1-infected bone marrow-derived dendritic cells. Importantly, immunization of H-2(d) mice with the four newly identified CD4(+) Th1 peptide epitopes but not with four CD4(+) Th2 peptide epitopes induced a robust protective immunity against lethal ocular HSV-1 challenge. These peptide epitopes may prove to be important components of an effective immunoprophylactic strategy against herpes.  相似文献   

6.
To test the immunogenicity of GPGRAFY-epitope-based candidate vaccines, a peptide with four repetitive GPGRAFY epitopes, V3-P1 [C-(GPGRAFY)4], and a peptide (PND) of the principal neutralizing domain (V3 loop: amino acid 301-328: C-TRPNNNTRKSIRIQRGPGRAFYTIGKI) on gp120 were synthesized and covalently coupled to a carrier protein BSA. Immunization of BALB/c mice and New Zealand White Rabbits with these conjugate vaccines engendered strong antibody responses against the PND (mouse serum titer by 1:12,800-25,600; rabbit serum titer by 1:6,400-12,800). Interestingly, the V3-P1-BSA conjugates and the PND-BSA conjugates could induce high levels of GPGRAFY-epitope-specific antibodies in the mice and rabbits (mouse serum titer by 1:25,600; rabbit serum titer by 1:12,800-25,600), while a recombinant gp160 subunit vaccine induced a low level of GPGRAFY-epitope-specific antibodies (serum titer by 1:400-1,600 in mice and rabbits). To confirm the above results, GPGRAFY-epitope-specific antibodies were isolated from rabbit sera induced by V3-P1-BSA, PND-BSA conjugates and rgp160 vaccine. In fact, 23-38 and 13-22 microg epitope-specific antibodies per milliliter serum were isolated from rabbit sera induced by V3-P1-BSA and PND-BSA conjugate, respectively, while 1.34 microg epitope-specific antibodies per milliliter serum were identified in rabbit serum induced by rgp160 vaccine. In the control group, only 0.069 microg proteins per milliliter serum were found in pooled pre-immune serum (normal serum). These results from mouse and rabbit experiments indicate that epitope and peptide vaccines both induce high levels of GPGRAFY-epitope-specific antibodies in comparison with rgp160 subunit vaccine, suggesting that epitope/peptide vaccines may be a new strategy to induce protective activity.  相似文献   

7.
Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10 amino acids in length, exhibited high-affinity binding in vitro to purified human HLA-A*0201 molecules. Three of these four peptide epitopes, gD53-61, gD70-78, and gD278-286, significantly stabilized HLA-A*0201 molecules on T2 cell lines and are highly conserved among and between HSV-1 and HSV-2 strains. Consistent with this, in 33 sequentially studied HLA-A*0201-positive, HSV-1-seropositive, and/or HSV-2-seropositive healthy individuals, the most frequent and robust CD8+ T cell responses, assessed by IFN-gamma ELISPOT, CD107a/b cytotoxic degranulation, and tetramer assays, were directed mainly against gD53-61, gD70-78, and gD278-286 epitopes. In addition, CD8+ T cell lines generated by gD53-61, gD70-78, and gD278-286 peptides recognized infected target cells expressing native gD. Lastly, CD8+ T cell responses specific to gD53-61, gD70-78, and gD278-286 epitopes were induced in HLA-A*0201 transgenic mice following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.  相似文献   

8.
The antibodies to nicotinic acetylcholine receptor alpha(181-192) synthetic peptides were elicited in rabbits and mice using the peptides conjugated to protein carriers in different orientations, either through C-terminal Cys (S-conjugates), or through amino groups (N-conjugates). S-conjugated peptides were less potent in eliciting peptide-specific antibodies compared to N-conjugates and this type of conjugation resulted in antibodies to the coupling reagent. However, the epitopes present in either S- or N-conjugated peptides appeared to be similar, indicating that amino acid residues, which form the epitope, were located in the middle part of the peptide and did not include both N- and C-terminal residues. Peptide conjugation to a protein carrier did not play a role in stabilizing the peptide conformation, but was necessary to concentrate the peptide epitopes on the carrier surface enabling bivalent antibody binding.  相似文献   

9.
Glycoprotein D (gD) is a virion envelope component of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) which plays an important role in viral infection and pathogenesis. Previously, anti-gD monoclonal antibodies (MAbs) were arranged into groups which recognize distinct type-common and type-specific sites on HSV-1 gD (gD-1) and HSV-2 gD (gD-2). Several groups recognize discontinuous epitopes which are dependent on tertiary structure. Three groups, VII, II, and V, recognize continuous epitopes present in both native and denatured gD. Previously, group II consisted of a single MAb, DL6, whose epitope was localized between amino acids 268 and 287. In the study reported here, we extended our analysis of the antigenic structure of gD, concentrating on continuous epitopes. The DL6 epitope was localized with greater precision to residues 272 to 279. Four additional MAbs including BD78 were identified, each of which recognizes an epitope within residues 264 to 275. BD78 and DL6 blocked each other in binding to gD. In addition, a mutant form of gD was constructed in which the proline at 273 was replaced by serine. This change removes a predicted beta turn in gD. Neither antibody reacted with this mutant, indicating that the BD78 and DL6 epitopes overlap and constitute an antigenic site (site II) within residues 264 to 279. A separate antigenic site (site XI) was recognized by MAb BD66 (residues 284 to 301). This site was only six amino acids downstream of site II, but was distinct as demonstrated by blocking studies. Synthetic peptides mimicking these and other regions of gD were screened with polyclonal antisera to native gD-1 or gD-2. The results indicate that sites II, V, VII, and XI, as well as the carboxy terminus, are the major continuous antigenic determinants on gD. In addition, the results show that the region from residues 264 through 369, except the transmembrane anchor, contains a series of continuous epitopes.  相似文献   

10.
The antibody-inducing properties of a bacterial/viral bivalent DNA vaccine (pRECFA), expressing a peptide composed of N- and C-terminal amino acid sequences of the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) fused with an inner segment encoding the major structural subunit of enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae (CFA/I), was evaluated in BALB/c mice following intramuscular immunization. The bivalent pRECFA vaccine elicited serum antibody responses, belonging mainly to the IgG2a subclass, against both CFA/I and HSV gD proteins. pRECFA-elicited antibody responses cross-reacted with homologous and heterologous ETEC fimbrial antigens as well as with type 1 and type 2 HSV gD proteins, which could bind and inactivate intact HSV-2 particles. On the other hand, CFA/I-specific antibodies could bind but did not neutralize the adhesive functions of the bacterial CFA/I fimbriae. In spite of the functional restriction of the antibodies targeting the bacterial antigen, the present evidence suggests that fusion of heterologous peptides to the HSV gD protein represents an alternative for the design of bivalent DNA vaccines able to elicit serum antibody responses.  相似文献   

11.
Reduced immunogenicity of beta-lactoglobulin by conjugating with chitosan   总被引:2,自引:0,他引:2  
Bovine beta-lactoglobulin (beta-LG) was conjugated with chitosan (CHS) by means of a water-soluble carbodiimide to reduce the immunogenicity of beta-LG. Each beta-LG-CHS conjugate was purified by ion-exchange chromatography and hydrophobic chromatography. The conjugation between beta-LG and CHS was confirmed by SDS-PAGE, the isoelectric point of the conjugate being higher than that of beta-LG. Two types of the beta-LG-CHS conjugate were obtained with molar ratios of beta-LG to CHS of 1:1 (F1) and 1:2 (F2). Structural analyses by fluorescence measurement, ELISA with monoclonal antibodies and retinol-binding activity indicated that the conjugates had almost maintained the native structure of beta-LG. The antigenicity of the beta-LG-CHS conjugates was similar to that of beta-LG in C3H/He mice. Reduction of the immunogenicity of beta-LG was achieved by conjugation with CHS. In particular, F2 showed very low immunogenicity. B cell epitopes of beta-LG and the conjugates recognized in C3H/He mice were determined with 15-mer multi-pin peptide; the linear epitope profiles of the conjugates were found to be similar to those of beta-LG, while the antibody response to each epitope was dramatically reduced. Conjugation of beta-LG with chitosan was effective for reducing the immunogenicity of beta-LG.  相似文献   

12.
We previously determined a number of 'permissive' sites in the periplasmic maltose-binding protein (MalE) from Escherichia coli. These sites accept the insertion of heterologous peptides without major deleterious consequences for the activities, structure and cellular location of the protein. This study explores the versatility of two such permissive sites for the synthesis of foreign peptides, and examines the antigenicity and the immunogenicity of the inserts. One site is located after amino acid 133 (aa133) of MalE, and the other after aa303. Both sites tolerate inserts of up to at least 70 aa and accept sequences of different natures. Hydrophobic aa sequences are accepted, although strongly hydrophobic sequences, such as the Sendai virus F protein membrane anchor, affected export. We compared the antigenic and the immunogenic properties of peptides derived from the coat proteins of HBV and poliovirus which contain well defined B-cell epitopes. Specific monoclonal antibodies show that the antigenic properties of the inserted B-cell epitopes were different at the two sites. Despite these differences, the inserted peptides elicited strong and comparable antibody responses in mice against the corresponding synthetic peptides. In this case, and with these criteria, the molecular context of the peptides did not affect the immunogenicity of B-cell epitopes. We show for the first time that when a foreign peptide carrying a T-cell epitope was inserted in MalE, the hybrid proteins can elicit a T-cell response against the foreign peptide both in vivo and in vitro. Furthermore, the MalE hybrid was as efficient as free peptide in stimulating T-cell hybridomas in vitro. The MalE vectors provide a powerful genetic system to study how the position and the conformation of a peptide within a protein affect the B-cell and T-cell responses.  相似文献   

13.
The glycoprotein D of HSV-2 (gD2) is currently a leading candidate vaccine target for genital herpes vaccines as both cellular and humoral responses can be generated against it. However, little is known about how vaccine composition will affect T cell epitope selection. A panel of 15-mer peptides (with 11 amino acid overlap) spanning full-length gD2 was used to investigate the fine specificity of T cell responses to gD2 as well as the role of vaccine composition on epitope selection. Spleen cells from BALB/c mice (H-2(d)) immunized with gD2, formulated with or without AlPO(4) and/or IL-12, were stimulated in vitro with overlapping gD2 peptides. Cellular responses (lymphoproliferation and IFN-gamma expression) were mapped to four epitopes within the gD2 molecule: gD2(49-63), gD2(105-119), gD2(245-259), and gD2(333-347). CTL analysis of these four epitopes indicated that not all of them could serve as a CTL epitope. Mice immunized with gD2 expressed from a viral vector mounted CTL responses primarily to one epitope located in the extracellular domain of gD2 (gD2(245-259)). More importantly, mice immunized with gD2 co-administered with IL-12 mounted CTL responses to an additional epitope located at the transmembrane-cytoplasmic junction of gD2 (gD2(333-347)). The location of this novel epitope emphasizes the benefit of using full-length versions of glycoproteins when designing vaccine components.  相似文献   

14.
Some neutralizing epitopes on HIV-1 envelope proteins were identified to induce antibodies which could effectively inhibit the infection of different strains in vitro. But only very low levels of these antibodies were determined in the HIV-1 infected individuals. To increase the levels of protective antibodies in vivo, we suggested multi-epitope vaccine as a new strategy to induce high level of neutralization antibodies with predefined multi-epitope specificity. A synthesized epitope peptide MP (CG-GPGRAFY-G-ELDKWA-G-RILAVERYLKD) containing three neutralizing epitopes (GPGRAFY, ELDKWA, RILAVERYLKD) was conjugated to carrier protein KLH, and then used for immunization in mouse together with aluminium adjuvant or Freund's adjuvant (FA). The candidate MP-KLH multi-epitope vaccine in aluminium adjuvant could induce antibody response very strongly to the epitope peptide C-(RILAVERYLKD-G)2 and the immunosuppressive peptide (P1) (LQARILAVERYLKDQQL) (antibody titer: 1:51200), strongly to the epitope peptide C-(ELDKWA-G)4 and the C-domain peptide (P2) (1:12800), and moderately to the epitope peptide C-(GPGRAFY)4 and the V3 loop peptide (1:1600). The immunoblotting analysis demonstrated that the antibodies in sera could recognize P1, P2, V3 loop peptides and rsgp41 (aa 539-684). These results are similar with that in the case of PI-BSA in FA, and suggest that the multi-epitope vaccine in aluminium could induce high levels of antibodies of predefined multi-epitope specificity, which provides experimental evidence for the new strategy to develop an effective neutralizing antibody-based multi-epitope vaccine against HIV-1.  相似文献   

15.
We have previously prepared beta-lactoglobulin (beta-LG)-carboxymethyl dextran (CMD) conjugates with water-soluble carbodiimide and achieved reduced immunogenicity of beta-LG. In the present study, to elucidate the mechanism for the reduced immunogenicity of beta-LG, we investigated changes in the T cell response to beta-LG after conjugation with CMDs differing in molecular weight (about 40 and 162 kDa). Lymph node cells from BALB/c, C3H/He, and C57BL/6 mice that had been immunized with beta-LG or the conjugates were stimulated with beta-LG, and the in vivo T cell response was then evaluated by BrdU (5-bromo-2'-deoxyuridine) ELISA as the ex vivo proliferative response. T cells from the conjugate-immunized mice showed a lower proliferative response than those from the beta-LG-immunized mice. T cell epitope scanning, using synthesized peptides, showed that the T cell epitope profiles of the conjugates were similar to those of beta-LG, whereas the proliferative response to each epitope was reduced. These results indicate that the lower in vivo T cell response with the conjugates was not due to induction of conjugate-specific T cells, but due to a decrease in the number of beta-LG-specific T cells. After the lymph node cells from beta-LG-immunized mice had been stimulated with beta-LG or the conjugates, the efficiency of the antigen presentation of the conjugate to beta-LG-specific T cells was evaluated by BrdU ELISA as the in vitro proliferative response. The antigen presentation of beta-LG to the T cells was reduced by conjugation with CMD. In addition, conjugation with CMD enhanced the resistance of beta-LG to cathepsin B and cathepsin D, which suggest that conjugation with CMD inhibited the degradation of beta-LG by proteases in APC and led to suppression of the generation of antigenic peptides including T cell epitopes from beta-LG. It is therefore considered that the suppressive effect on the generation of T cell epitopes reduced the antigen presentation of the conjugates and that this reduction led to a decrease in the number of beta-LG-specific T cells in vivo. As a result, the decreased help to B cells by T cells would have reduced the antibody response to beta-LG. We conclude that suppression of the generation of T cell epitopes by conjugation with CMD is important to the mechanism for the reduced immunogenicity of beta-LG.  相似文献   

16.
We previously defined eight groups of monoclonal antibodies which react with distinct epitopes of herpes simplex virus glycoprotein D (gD). One of these, group VII antibody, was shown to react with a type-common continuous epitope within residues 11 to 19 of the mature glycoprotein (residues 36 to 44 of the predicted sequence of gD). In the current investigation, we have localized the sites of binding of two additional antibody groups which recognize continuous epitopes of gD. The use of truncated forms of gD as well as computer predictions of secondary structure and hydrophilicity were instrumental in locating these epitopes and choosing synthetic peptides to mimic their reactivity. Group II antibodies, which are type common, react with an epitope within residues 268 to 287 of the mature glycoprotein (residues 293 to 312 of the predicted sequence). Group V antibodies, which are gD-1 specific, react with an epitope within residues 340 to 356 of the mature protein (residues 365 to 381 of the predicted sequence). Four additional groups of monoclonal antibodies appear to react with discontinuous epitopes of gD-1, since the reactivity of these antibodies was lost when the glycoprotein was denatured by reduction and alkylation. Truncated forms of gD were used to localize these four epitopes to the first 260 amino acids of the mature protein. Competition experiments were used to assess the relative positions of binding of various pairs of monoclonal antibodies. In several cases, when one antibody was bound, there was no interference with the binding of an antibody from another group, indicating that the epitopes were distinct. However, in other cases, there was competition, indicating that these epitopes might share some common amino acids.  相似文献   

17.
One linear and three cyclic peptides corresponding to the 278-287 ((278)LLEDPVGTVA(287)) sequence of glycoprotein D (gD-1) of herpes simplex virus were synthesized for the analysis of the effect of cyclization on protection against enzymatic degradation. In this design, the turn-forming motif ((281)DPVG(284)) was positioned in the central part of the peptide and elongated by three amino acids at both termini. Cyclopeptide formation was achieved by the introduction of a peptide bond, a disulfide bridge or a thioether link. The stability of these peptides was compared in human serum and also in rat lysosomal preparations. The data obtained in 10% and 50% human serum show that all three types of cyclization enhanced the stability, but at different levels. Complete stability was only achieved by the introduction of a thioether link, while the presence of a disulfide or peptide bond resulted in improved, but partial resistance against hydrolytic decomposition. In lysosomal preparations the presence of cyclic primary structure provided full protection against enzymatic hydrolysis. Taken together, these findings indicate that by appropriate structural modification it is feasible to construct a synthetic antigen with high stability against enzymatic degradation in complex biological fluids. Further studies are in progress to identify enzymes responsible for degradation in diluted human sera as well as in the lysosomal preparations and to gain more detailed information on the mechanism of action.  相似文献   

18.
DM functions as a peptide editor for MHC class II-bound peptides. We examined the hypothesis that DM peptide editing plays a key role in focusing the in vivo CD4 T cell responses against complex pathogens and protein Ags to only one, or at most a few, immunodominant peptides. Most CD4 T cells elicited in the wild-type BALB/c (H-2d) mice infected with Leishmania major predominantly recognize a single epitope 158-173 within Leishmania homologue of activated receptor for c-kinase (LACK), as is the case when these mice are immunized with rLACK. Using DM-deficient (DM-/-) H-2d mice, we now show that in the absence of DM, the in vivo CD4 T cell responses to rLACK are skewed away from the immunodominant epitopes and are diversified to include two novel epitopes (LACK 33-48 and 261-276). DM-/- B10.BR (H-2k) mice showed similar results. These results constitute the first demonstration of the role of DM peptide editing in sculpting the specificity and immunodominance in in vivo CD4 T cell responses.  相似文献   

19.
Two conjugates with epitope peptide (278)LLEDPVGTVA (287) derived from glycoprotein D (gD-1) of Herpes simplex virus (HSV) were synthesized for analysis of the effect of conjugation on protection against enzymatic degradation. In this design, the turn-forming epitope core (281)DPVG (284) was positioned in the central part of the peptide and elongated by three amino acids from the native sequence at both termini. Conjugation was achieved by the introduction of amide bond or thioether linkage between the C-terminal of the HSV peptide and the side chain of four lysine residues of the oligotuftsin derivative used as carrier molecule. We compared the proteolytic stability of the conjugates in diluted human sera as well as in rat liver lysosomal preparation. The data obtained in lysosomal preparation at two pH values (pH 3.5 and 5.0) show that the type of covalent bond between the carrier and the epitope peptide had no significant effect, as compared to the stability of the free, unconjugated peptide. Based on the identification of degradation fragments by mass spectrometry we found marked differences in the lengths and amounts of oligopeptides obtained. In contrast, in 10% and 50% human serum the conjugation provided full protection against enzymatic hydrolysis over 96 h, while the free peptide was decomposed quickly.  相似文献   

20.
Autoantibodies against centromere protein ‐F have been reported to be associated with various types of cancer with poor prognosis. The characterization of these autoantibody specificities is important in both diagnostics and basic research. In this study, we mapped the epitope (NELSRIRSEKA) of two monoclonal centromere protein F antibodies. The epitope was localized by screening of overlapping peptides followed by a fast and efficient estimation of the minimal peptide length required for antibody recognition, based on the screening of terminally truncated resin‐bound peptide analogs. The epitope was determined through competitive inhibition assays of systematically truncated free peptides. In addition, the importance of the involved amino acid side chains of the identified epitope was determined through competitive inhibition assays using alanine‐substituted analogs. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号