首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of amidase, cysteine protease, and trypsin inhibitor activities were studied in the leaves of wheat (Triticum aestivum L.) seedlings grown under controlled conditions (25°C, illuminance 10 kLx, 14-h photoperiod) and subjected to cold hardening (5°C, 10 kLx, 14-h photoperiod). Changes in the activity of amidases and cysteine proteases proved to precede an increase in cold resistance during cold hardening and a decrease in cold resistance after the end of cold hardening. The activity of trypsin inhibitors changed only during cold hardening. It is suggested that amidases, cysteine proteases, and trypsin inhibitors are involved in the cold adaptation of plants.  相似文献   

2.
Long-term effects of elevated winter temperatures on cold hardiness were investigated for Norway spruce (Picea abies L. Karst.), lodgepole pine (Pinus contorta Dougl.) and Scots pine (Pinus sylvestris L.). Two-year-old seedlings with the same pre-history of growth and cold hardening in the field were maintained from early December to late March at two field sites in northern Sweden and in a cold room. The temperatures at these locations averaged –13·5, –8·9 and 5·5°C, respectively. Following treatments, carbohydrate contents and cold tolerances were assessed. Needle respiration was also analysed during the 5·5°C treatment. Cold tolerance of lodgepole pine and Scots pine was much reduced following the 5·5°C treatment. Cold tolerance was somewhat reduced in lodgepole pine following the –8·9 °C treatment, but was essentially maintained in spruce throughout all treatments. The cold tolerance of needles was strongly correlated with their soluble sugar contents. Spruce maintained cold hardiness by having larger reserves of sugars and lower rates of respiration which decreased more rapidly as sugars were depleted. Tolerance of lodgepole pine to frost desiccation was also much reduced following the 5·5°C treatment.  相似文献   

3.
The proteinases in the midguts of three scarab white grub species, Lepidiota noxia, L. negatoria, and Antitrogus consanguineus, were investigated to classify the proteinases present and to determine the most effective proteinase inhibitor for potential use as an insect control agent. pH activity profiles indicated the presence of serine proteinases and the absence of cysteine proteinases. This was confirmed by the lack of inhibition by specific cysteine proteinase inhibitors. Trypsin, chymotrypsin, elastase, and leucine aminopeptidase activities were detected by using specific synthetic substrates. A screen of 32 proteinase inhibitors produced 9 inhibitors of trypsin, chymotrypsin, and elastase which reduced proteolytic activity by greater than 75%. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The influence of cold hardening of rye (Secale cereale L.) and wheat (Triticum aestivum L.) seedlings on their resistance to the oxidative stress (OS) agents, namely, 50 mM hydrogen peroxide or 5 mM iron (II) sulfate was studied. Unhardened rye seedlings were more resistant to hydrogen peroxide than those of wheat, since their growth was less inhibited, and they accumulated lesser amounts of lipid peroxidation products after a treatment with H2O2. The interspecific differences in responses to FeSO4 were less significant. The unhardened seedlings of rye, in comparison with those of wheat, possessed more active guaiacol peroxidase (GPO) and more levels of anthocyanins and proline. In response to the OS agents, the unhardened rye seedlings enhanced activities of superoxide dismutase and catalase, whereas the wheat seedlings enhanced GPO activity and proline content. The cold hardening (6 days at 2°C) increased activities of antioxidant (AO) enzymes, contents of proline, sugars, and anthocyanins in seedlings of both species, and made the seedlings more resistant to the OS agents. After the cold hardening, rye seedlings were more resistant to OS than wheat seedlings. The hardened seedlings of both species activated the AO enzymes in response to H2O2 or FeSO4 greater than the unhardened ones. However, the hardened wheat seedlings, in contrast to the unhardened ones, did not augment the proline content in contact with the OS agents. The conclusion was drawn on different contributions of AO enzymes and low-molecular weight compounds to the basal and induced by the cold—hardening resistances of rye and wheat seedlings to OS.  相似文献   

5.
The activity of alternative oxidase (AOX) and generation of reactive oxygen species (ROS) in mitochondria of winter wheat Triticum aestivum L. isolated from seedlings subjected to one (7-day exposure to 2–3°C) and two (7-day exposure to 2–3°C and 2-day exposure to −2°C) phases of a cold hardening has been studied. The antioxidant role of AOX in the first phase of the cold hardening has been determined using inhibitors of respiratory chain. Exposure to low temperature was shown to lead to inhibition of cytochrome pathway in mitochondria, increase of ROS production, and switching of the electron transport to the alternative pathway. Decrease in succinate- and antimycin A-induced ROS generation was found during two phases of cold hardening. This fact may point out to functioning of uncoupling proteins under these conditions. Thus, antioxidant function of AOX during the first phase of cold hardening may be an important component of the cold adaptation mechanism in winter crops. The data suggest that ROS and free fatty acids may be signal molecules regulating the activity of two energy-dissipation systems (AOX and uncoupling proteins).  相似文献   

6.
Phenomenological responses of plants to daily short-term exposure to low hardening temperature was studied under chamber and field conditions. Experiments were carried out on cucumber (Cucumis sativus L.), barley (Hordeum vulgare L.), marigolds (Tagetes L.), and petunia (Petunia × hybrida) plants. The obtained data demonstrated a similar pattern of response in all studied plant species to different variants of exposure to low hardening temperature. The main features of plant response to daily short-term exposure to low hardening temperature include: a higher increment in cold tolerance (cf. two-or threefold increase relative to constant low hardening temperature) that peaked on day 5 (cf. day 2 at constant low hardening temperature) and was maintained for 2 weeks (cf. 3–4 days at constant low hardening temperature); a simultaneous increase in heat tolerance (cf. twofold relative to constant low hardening temperature) maintained over a long period (cf. only in the beginning of the exposure to constant low hardening temperature); a sharp drop in the subsequent cold tolerance after plant incubation in the dark (cf. a very low decrease in cold tolerance following the exposure to constant low hardening temperature); a combination of high cold tolerance and high photochemical activity of the photosynthetic apparatus (cf. a low non-photochemical quenching at constant low hardening temperature); and the capacity to increase cold tolerance in response to repeated short-term exposures to low hardening temperature in plants grown outdoors (cf. a gradual increase after repeated exposure to constant low hardening temperature). Possible mechanisms underlying the plant response to daily short-term exposure to low temperature are proposed.  相似文献   

7.
8.
The content of particular components of water-soluble carbohydrates and cold tolerance of cucumber (Cucumis sativus L.) cotyledonary leaves were studied at early developmental stages in dynamics during 6-day-long treatment with a temperature reduced to 12°C at two regimes: short-term cooling (2 h in the end of the night period, DROP) or permanent low-temperature treatment (PLT). PLT cucumber plants were characterized by the accumulation of oligosaccharides, whereas DROP plants contained increased amounts of glucose, fructose, and raffinose, indicating their higher metabolic status. When changes in carbohydrate fractions were compared with the dynamics of cold tolerance, it was found that these changes were synchronous in PLT plants but asynchronous for glucose and oligosaccharides in DROP plants. We suppose that, in cotyledonary leaves of DROP plants, two pools of sugars are produced; one of them used for tolerance development and another one — in active metabolism. This provides for the combination of activated metabolism and high cold tolerance of these plants. In PLT plants, all components of water-soluble carbohydrates are involved in cold tolerance development.  相似文献   

9.
The effect of cold hardening on the accumulation of glutathione (GSH) and its precursors was studied in the shoots and roots of wheat (Triticum aestivum L.) cv. Cheyenne (Ch, frost-tolerant) and cv. Chinese Spring (CS, moderately frost-sensitive), in a T. spelta L. accession (Tsp, frost-sensitive) and in chro- mosome substitution lines CS (Ch 5A) and CS (Tsp 5A). The fast induction of total glutathione accumulation was detected during the first 3 d of hardening in the shoots, especially in the frost-tolerant Ch and CS (Ch 5A). This observation was corroborated by the study of de novo GSH synthesis using [35S]sulfate. In Ch and CS (Ch 5A) the total cysteine, γ-glutamylcysteine (precursors of GSH), hydroxymethylglutathione and GSH contents were greater during the 51-d treatment than in the sensitive genotypes. After 35 d hardening, when the maximum frost tolerance was observed, greater ratios of reduced to oxidised hydroxymethylglutathione and glutathione were detected in Ch and CS (Ch 5A) compared to the sensitive genotypes. A correspondingly greater glutathione reductase (EC 1.6.4.2) activity was also found in Ch and CS (Ch 5A). It can be assumed that chromosome 5A of wheat has an influence on GSH accumulation and on the ratio of reduced to oxidised glutathione as part of a complex regulatory function during hardening. Consequently, GSH may contribute to the enhancement of frost tolerance in wheat. Received: 24 March 1999 / Accepted: 19 July 1999  相似文献   

10.
Various types of proteinases are implicated in the malignant progression of human and animal tumors. Proteinase inhibitors may therefore be useful as therapeutic agents in anti-invasive and anti-metastatic treatment. The aims of this study were (1) to estimate the relative importance of proteinases in B16 cell invasion in vitro using synthetic, class-specific proteinase inhibitors and (2) to assess the inhibitory effect of some naturally occurring cysteine proteinase inhibitors. Serine proteinase inhibitor reduced invasiveness by up to 24%, whereas inhibition of aspartic proteinases reduced invasion by 11%. Synthetic inhibitors of cysteine proteinases markedly impaired invasion: cathepsin B inhibitors, particularly Ca-074Me, inhibited invasion from 20-40%, whereas cathepsin L inhibitor Clik 148 reduced invasion by 11%. The potato cysteine proteinase inhibitor PCPI 8.7 inhibited invasion by 21%, whereas another potato inhibitor, PCPI 6.6, and the mushroom cysteine proteinase inhibitor clitocypin had no effects. As the inhibitors that inhibited cathepsin B were in general more efficient at impairing the invasiveness, we conclude that of the two cysteine proteinases, cathepsin B plays a more important role than cathepsin L in murine melanoma cell invasion.  相似文献   

11.
Immunocytochemical study of the basic characteristics of the tubulin and actin cytoskeleton (total content, orientation, structure, and stability) was performed for various root zones of the seedlings of winter wheat cultivars contrasting in their freezing tolerance. Plant cold hardening (3°C, 7 days) and ABA treatment (30 M, 3 days) increased the stability of tubulin microtubules (MT), that is, reduced the depolymerizing action of oryzalin in vivo. However, the mechanisms of hardening and ABA stabilizing action on the cytoskeleton were different: low temperature enhanced spatial MT aggregation and resulted in the formation of a dense network of thick MT bundles, whereas ABA reduced the content of tubulin components and induced microfilament (MF) depolymerization. Most pronounced temperature- and ABA-induced cytoskeleton changes were observed in the differentiation zone, which indicates an important role of this root zone in plant adaptation and development of root freezing tolerance. Low temperatures reduced the hormonal effect on the structural arrangement and stability of MT and MF in wheat cultivars of high and moderate freezing tolerance but increased hormonal effects in the slightly tolerant cultivar. MF depolymerization and an increase in the proportion of stable MT are supposed to be a necessary condition for seedling growth retardation after their treatment with ABA and for seedlings at the initial phase of their adaptation to low temperature. At the final phase of cold hardening, some growth acceleration is evidently determined by the accumulation of highly labile MT and greater actin polymerization.  相似文献   

12.
13.
Occurrence of proteolytic inhibitors in various tissues of barley   总被引:1,自引:0,他引:1  
M. Kirsi  J. Mikola 《Planta》1971,96(4):281-291
Summary The three groups of proteolytic inhibitors present in resting barley grains, namely, trypsin inhibitors, Aspergillus-proteinase inhibitors, and inhibitors of endogenous proteinases, occur in both the embryo and the two endosperm tissues. There are pronounced quantitative differences, however. The three inhibitor activities in the embryo are, respectively, 6-, 0.1-, and 6-fold of those in the endosperm.During germination at 20° all inhibitor activities disappear from the endosperms in 4–5 days. Young rootlets and coleoptiles contain inhibitors of trypsin and Aspergillus proteinase, but these disappear after 4–5 days' germination. However, the trypsin inhibitor content per seedlings remains roughly constant through the whole period. The Aspergillus-proteinase inhibitors, in contrast, exhibit a pronounced increase of activity per seedling.No inhibitor activities were detected in leaves and roots at later stages of growth.The trypsin inhibitor which we have earlier purified from resting grains occurs exclusively in the two endospermal tissues and is immunologically entirely different from the trypsin inhibitors present in embryos and young seedlings.  相似文献   

14.
15.
16.
Shoots and roots of wheat (Triticum aestivum L., cold-resistant species) and cucumber (Cucumis sativus L., cold-sensitive species) were chilled at 2°C or 10°C, respectively, for 7 h. The changes in cold, heat, and salt resistance in treated leaf and root cells were recorded. Local cooling of the leaf resulted in an increase of its cold and salt tolerance, but its heat tolerance remained unchanged. At the same time, cold tolerance of the root slightly increased as a result of local cooling, but its heat and salt tolerance decreased. Cooling of the shoot did not affect the cold and heat tolerance of root cells but caused a decrease in their salt tolerance. Finally, in the leaf maintained at a normal temperature, there was an increase in all kinds of stress resistance as a result of root cooling. We discuss the possibility of an unspecific change in stress resistance caused by metabolic shifts. These shifts are induced by a signal, which is transmitted inside the plant into plant organs located at a considerable distance from the chilled ones.  相似文献   

17.
The effects of 1-min-long exposure to 42°C (hardening heating) on heat tolerance and dynamics of ROS (superoxide anion radical and hydrogen peroxide) generation were investigated in the wheat (Triticum aestivum L., cv. Elegiya) seedlings. During the initial 5–30 min after the onset of hyperthermia, ROS generation by roots and shoots was intensified, and superoxide dismutase (SOD) was activated. During the first hour after hardening heating, the seedling tolerance to injurious 10-min-long treatment with high temperature (46°C) decreased but subsequently it gradually rose, reaching maximum in 24 h. Transient accumulation of hydrogen peroxide induced by hardening was suppressed by seedling treatment with H2O2 scavenger dimethylthiourea, by inhibitors of NADPH-oxidase (imidazole) and DDC (sodium diethyldithiocarbamate). These compounds considerably reduced favorable effect of hardening on seedling heat tolerance. It was concluded that generation of a signal inducing the development of heat tolerance depended on NADPH-oxidase producing superoxide anion radical and SOD that transforms it into hydrogen peroxide (more stable ROS performing signaling functions).  相似文献   

18.
Five-day-old etiolated cucumber ( Cucumis sativus L.) seedlings cv. Marketmore held at 2°C for 72 h developed chilling injury, resulting in desiccation and collapse of the hypocotyl tissue and eventual plant death. Hypoxia-induced accumulation of ethanol and acetaldehyde led to tolerance of subsequent chilling, as evidenced by continued hypocotyl growth and freedom from injury. Attenuated accumulation of volatiles by applied bisulfite reduced the development of hypoxia-induced chilling tolerance in seedlings. In seedlings held in normoxia cold tolerance was induced by applied ethanol vapors, whereas acetaldehyde had a marginal effect, suggesting that hypoxia-induced cold tolerance may arise from the accumulation and activity of ethanol. Cold tolerance was also induced by exposure of seedlings to volatile anesthetics including n -propanol, n -butanol, chloroform and halothane, suggesting that ethanol activity may result from fluidization of membrane lipids. This view is consistent with results which showed that ethanol activity was not associated with lipid metabolism. However, development of cold tolerance in ethanol-enriched tissues was time dependent, indicating that ethanol activity probably also entails biosynthetic event(s).  相似文献   

19.
Abstract The responses of overwintering larvae of the pine needle gall midge Thecodiplosis japonensis Uchida et Inouye to rapid cold hardening and cold acclimation were studied. A rapid cold hardening response is found in the 3rd instar larvae of T. japonensis. When overwintering larvae are transferred directly from 27°C to ‐ 15°C for 3 h, there is only 17.9% survival, whereas exposure to 4°C for 2 h prior to transfer to ‐ 15°C increases survival to 40.0%. The acquired cold tolerance is transient and is rapidly lost (after 15 min at 27°C). Rapid cold hardening is more effective in maintaining larval survival than cold acclimation. Different mechanisms are suggested to regulate the insect's cold hardiness under rapid cold hardening and cold acclimation.  相似文献   

20.
We aimed to study the protection of wheat plasma membrane (PM) under cold stress (0–2 °C) by the overaccumulation of glycine betaine (GB). For this, we used wild-type winter wheat (Triticum aestivum L.) cv. Shi 4185 (WT) and 3 transgenic lines (T1, T4, and T6) expressing the BADH gene isolated from Atriplex hortensis L. Under cold stress, the transgenic lines with higher GB content maintained better membrane integrity and higher plasma membrane H+-ATPase activity than WT. In these transgenic lines, ROS production and membrane lipid peroxidation were lower, while antioxidative enzyme activities and compatible solute contents were higher in comparison with WT. This may be attributable to their enhanced cold-stress tolerance mediated by GB overproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号