首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
Interactions between above- and below-ground herbivores play an important role in shaping plant competition and invasion, while the effects of non-native species invasions on above- and below-ground interactions remain unexplored. In this study, we report the interactions between an above-ground introduced beetle and a resident root nematode hosted by an invasive plant or its native congener with a laboratory bioassay and a greenhouse experiment in Wuhan, China. Nematode infections decreased beetle food conversion rates and larval biomass on the native plant, and increased beetle food conversion rates with no detectable impact on the larval biomass on the invasive plant. Beetle defoliation decreased nematode egg production on both the native and invasive plants. The interactions of the introduced beetle and the nematode were different by the invasive and native plants, which suggests that invasive plants and their introduced herbivores have the potential to alter above- and below-ground interactions and affect associated community members, which may in turn affect invasion processes and the safety of classical biocontrol practices.  相似文献   

2.
基于小嵩草(Kobresia parva)草甸连续2 a的牦牛放牧试验,研究了暖季和冷季放牧草场地上地下生物量及其分配规律、不同植物类群的绝对生长率生长率,探讨了放牧制度和放牧强度对不同植物类群补偿效应的影响。结果表明,随着放牧强度的增加地上总生物量呈减小趋势,放牧强度对暖季草场地上总生物量的影响极显著(P?0.01),对冷季草场地上总生物量的影响不显著(P?0.05);两季放牧草场各土壤层地下生物量随放牧强度的增加呈明显下降趋势,放牧强度对暖季放牧各土壤层地下生物量的影响显著(P?0.05),对冷季放牧各土壤层地下生物量的影响不显著(P?0.05);冷季放牧草场牧草生长季地下生物量与地上生物量的比值随放牧强度的增大而减小,暖季放牧草场对照区地下生物量与地上生物量的比值低于轻度放牧和中度放牧、高于重度放牧;暖季放牧草场各放牧处理不同植物类群均存在超补偿生长,但莎草科和禾本科植物的超补偿生长在8月份,阔叶植物的超补偿生长发生在6月和7月份,禾本科植物的超补偿生长效应强于莎草科植物和阔叶植物,轻度和中度放牧的补偿效应更明显;冷季放牧下不同植物类群也存在超补偿生长,但补偿效应不明现。因此,暖季适度(轻、中度)放牧利用更有利于产生超补偿生长,而重度利用对植被的稳定产生潜在的不利影响。  相似文献   

3.
Reed canary grass (Phalaris arundinacea L.) is an aggressive invader that dominates wetlands throughout the US. We examined the effects of reed canary grass on wetland habitat, both vegetation canopy architecture and soil environment, and its impacts the arthropod community in an urban wetland in Portland, OR, USA. Reed canary grass dominance resulted in reduced vegetation canopy complexity through reductions in native vegetation diversity and canopy height. In addition, reed canary grass dominance significantly changed the wetland soil environment, decreasing soil organic content and increasing soil moisture. The arthropod community responded to these habitat changes, being distinct between plots dominated by reed canary grass and those dominated by native vegetation. In addition, diversity measures were significantly lower in plots dominated by reed canary grass. Variables describing both vegetation canopy complexity and soil environment were more important predictors than relative abundance of reed canary grass in multiple regression models developed for dominant arthropod taxa and community metrics. Our results suggest that the mechanism by which reed canary grass affects the wetland arthropod community is primarily indirect, through habitat changes, rather than by directly altering its food source.  相似文献   

4.
Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach.  相似文献   

5.
Abstract. This paper describes patterns of below-ground components in grassland ecosystems. It provides estimates of the contribution of below-ground organs to the total phytomass of the community and of different species to the below-ground phytomass; it describes the distribution of above- and below- ground organs of different species and the spatial and temporal correlation between above-ground and below-ground phyto-mass – both total standing crop and net primary production. 10 Siberian grasslands (meadows and steppes) were investigated during 15 yr. Ca. 70 % of the living phytomass is located in the soil and no less than 70 % of the net primary production is allocated in below-ground organs. Phytomass distribution in the soil layer is more homogeneous than above-ground. For some species the spatial distribution within 1-m2 plots of the green and below-ground phytomass is similar, for others it is quantitatively or qualitatively different. According to the dominance-diversity curve, the above-ground size hierarchy is much stronger than the below-ground one. The active growth of above- and below-ground organs of a species may occur at different times of the season and it varies from year to year. Allocation of organic substances to rhizomes and roots occurs simultaneously and with proportional intensity.  相似文献   

6.
We investigated the seasonal variability of effects of elevated temperature (+3.5°C), CO2 elevation (700 μmol mol−1) and varying water regimes (high to low water content) on physiological responses and biomass growth of reed canary grass (Phalaris arundinacea L., local field-grown cultivar) grown in a boreal environment. In controlled environment greenhouses, various physiological and growth parameters of grass, i.e., light-saturated net photosynthetic rates (P nmax), water use efficiency (WUE) and optimal photochemical efficiency of photosystem II (F v/F m), and leaf area development and biomass of plant organs (leaf, stem, coarse, and fine root) were measured. During the early measurement periods, elevated temperature enhanced leaf photosynthesis and above-ground biomass of reed canary grass; however, this resulted in earlier senescence and lower biomass at the end of measurement period, compared to ambient temperature. This effect was more pronounced under water limitation. Elevated CO2 enhanced P nmax, WUE, and leaf area and total plant biomass (above- and below-ground) over growing season. The explanation for imbalance between stimulated photosynthesis and increase in above-ground biomass was that CO2 enrichment causes a greater increase in the plant’s root system. The combination of elevated temperature and CO2 slightly increases the growth of plant. Adequate water availability favored photosynthesis and biomass growth of reed canary grass. The temperature- and drought-induced stresses were partially mitigated by elevated CO2. Other cultivars should be tested in order to identify those that are better adapted to elevated temperatures and CO2 and variable water levels.  相似文献   

7.
Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.  相似文献   

8.
Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling) and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC) and redundancy analysis (RDA). In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning.  相似文献   

9.
Invasive plant species alter plant community composition and ecosystem function. In the United States, California native grasslands have been displaced almost completely by invasive annual grasses, with serpentine grasslands being one of the few remaining refugia for California grasslands. This study examined how the invasive annual grass, Aegilops triuncialis, has altered decomposition processes in a serpentine annual grassland. Our objectives were to (1) assess howA. triuncialis alters primary productivity and litter tissue chemistry, (2) determine whether A. triuncialis litter is more recalcitrant to decomposition than native litter, and (3) evaluate whether differences in the soil microbial community in A. triuncialis-invaded and native-dominated areas result in different decomposition rates of invasive and/or native plant litter. In invaded plant patches, A. triuncialis was approximately 50% of the total plant cover, in contrast to native plant patches in which A. triuncialis was not detected and native plants comprised over 90% of the total plant cover. End-of-season aboveground biomass was 2-fold higher in A. triuncialis dominated plots compared to native plots; however, there was no significant difference in belowground biomass. Both above- and below-ground plant litter from A. triuncialis plots had significantly higher lignin:N and C:N ratios and lower total N, P, and K than litter from native plant plots. Aboveground litter from native plots decomposed more rapidly than litter from A. triuncialis plots, although there was no difference in decomposition of belowground tissues. Soil microbial community composition associated with different soil patch types had no effect on decomposition rates. These data suggest that plant invasion impacts decomposition and nutrient cycling through changes in plant community tissue chemistry and biomass production.  相似文献   

10.
This investigation sought to examine if there was a difference between the ectomycorrhizal (ECM) communities in plots of native oak and introduced Scots pine and Sitka spruce forest. The ECM communities in four plots of each forest type were described, from five soil cores collected in each plot, by morphotyping, internal transcribed spacer (ITS)-restriction fragment length polymorphism matching of mycorrhizas and sporocarps and ITS sequencing. Fifty-one distinct taxa were distinguished; 25 were identified to species level, 11 to genus and 15 remained unidentified. Seventy-one ECM species were recorded as sporocarps from the forest plots; most (43 species) were found in the Sitka spruce plots. The below-ground ECM communities of the different forest types did not differ significantly with respect to species richness of taxa on roots, but differed in species composition. Multivariate analysis produced a clear separation of the communities of the different forest types using below-ground data, but the above-ground sporocarp data did not separate the forest types. Moreover, results of a Mantel test found no relationship between the above- and below-ground similarity matrices. The oak plots had the most distinctive ECM community, with Laccaria amethystina and Elaphomyces granulatus being frequent. The Sitka spruce plots showed the lowest intra-forest type similarity and were often dominated by "nursery type" ectomycorrhizas. There was only 10% similarity between the above- and below-ground ECM species in these plots, different colonisation methods of ectomycorrhizal taxa and insufficient below-ground sampling being possible reasons for this disparity. Our results indicate that plantations of non-native Sitka spruce can support similar levels of ECM diversity as native forests.  相似文献   

11.
Reed canary grass is a widely adapted temperate grass with a circumglobal distribution in the northern hemisphere. Because it has relatively high biomass yields under relatively infrequent harvest systems, this species is receiving increasing attention as a bioenergy feedstock. The objective of this study was to conduct a comparative biomass yield evaluation of reed canary grass accessions from a wide range of habitats in the north central and northeastern USA. Eight cultivars and 72 accessions were evaluated for biomass yield over 2 years at five locations in Iowa, New York, and Wisconsin. Accessions produced, on average, 6.7% higher biomass yield than the cultivars. Cultivars ranked from 50th to 77th in biomass yield out of a total of 80 cultivars and accessions. Genetic expression for biomass yield was highly consistent across locations and years. Accessions from southern and western collection sites tended to have the highest biomass yield. Reed canary grass populations in rural landscapes of the central and northeastern USA have value for increasing biomass yield potential of this bioenergy feedstock candidate species. The high biomass yield of many of these populations, combined with the large amount of genetic variability among these populations, offers potential for both short-term gains by selecting superior accessions and long-term gains by selection and breeding.  相似文献   

12.
Abstract. The nutrient status was studied in permanent plots of four plant communities, two rich-fen communities and two wooded grassland communities, all formerly used for haymaking. The concentrations of N, P and K in plant material of dominant and subdominant species (above- and below-ground) were measured in plots experimentally scythed annually or biennially for two decades, and in plots unscythed for four decades. Three of the communities had an N:P ratio of 14 or less, indicating N-limitation; the most fertile grassland community had particularly low values for the N:P ratio (6–12), as did a majority of the species, including all tall-herb species. A species-rich community of fen-margin vegetation in the lowest productive rich fen, had an N: P ratio of 17–19 in the above-ground biomass, which indicates P-limitation of nutrients. Molinia caerulea and Thalictrum alpinum were found to be the vascular plants with the highest N:P ratio, indicating P-limitation of nutrients. Calculations of N:K and K:P ratios indicated possible K-limitation in the rich-fen communities, especially for Thalictrum alpinum, the species with the highest N:K value. No expected change from N- to P-limited growth was found; in contrast, a reduction in the N:P ratio was found in the annually scythed plots of the rich fens, suggesting that reduced biomass production is mainly a result of disturbance by scything. As expected, a reduction in the concentration of K was detected in the scythed plots.  相似文献   

13.
14.
Invasive species pose a serious threat to native plant communities and are an important contributor to loss of biodiversity. In the case of Phalaris arundinacea, L. (Poaceae), reed canary grass, a cool-season, long-lived perennial plant native to Eurasia and North America, nonnative agronomically important genotypes were introduced to North America for numerous uses such as forage and soil stabilization. Following repeated introductions, reed canary grass became an aggressive invader that takes over natural wet prairies, stream-banks and wetlands. Reed canary grass can outcompete native plant species, resulting in monospecific stands with concomitant loss of plant and insect diversity and ultimately to alteration in ecosystem function. Abiotic factors such as disturbance, changes in hydrological regime, and particularly nutrient runoff to wetlands can enhance reed canary grass establishment and vegetative spread. In addition, the species' capacity for early season growth, rapid vegetative spread, high stem elongation potential, wide physiological tolerance, and high architectural plasticity make the species highly aggressive under a wide range of ecological conditions. The change in life-history and environmental conditions responsible for the enhanced aggressiveness observed between native and invasive genotypes are not yet understood. Hence, reed canary grass provides an ideal study system to test a number of ecological and genetic hypotheses to explain why some plant species become extremely aggressive when transported into a new geographical area. To date, genetic studies have found that invasive populations have high genetic diversity and that genotypes differ in their phenotypic plasticity and response to ecological conditions, which may contribute to their invasion success. Finally comparative studies currently underway on European native and American invasive genotypes of reed canary grass should shed light on the mechanisms responsible for reed canary grass's aggressiveness and should provide an experimental protocol to test ecological and genetic hypotheses about what makes a species invasive.  相似文献   

15.
Abstract. We tested the hypothesis that seedling establishment, the critical stage in the invasion of grassland by shrubs, is limited by competition with perennial grasses in seasonally wet/dry savannas. We placed seeds of two invasive exotic shrubs – Cryptostegia grandiflora, a woody vine, and Acacia nilotica, an arborescent legume – into pots with a wide range of existing above- and below-ground herbaceous biomass provided by either a tussock or a stoloniferous perennial grass. We also imposed different levels of watering frequency (5, 10 and 21 d), nutrient addition (+ and -) and grass clipping intensity (no clipping, clipped to 5 cm and clipped to 25 cm). There was no effect of any treatment on shrub seedling emergence or survival and all of the seedlings that emerged survived the 90-d growing period. Herbaceous competition also failed to have an effect on biomass accumulation in shrub seedlings. More frequent watering significantly increased above- and below-ground biomass accumulation for both shrub species and nutrient addition significantly increased Cryptostegia biomass accumulation. Based on these results, we question the proposition that reduction in competition by herbs via livestock grazing has been a significant factor in determining the rate or pattern of exotic shrub increase in the seasonally wet/dry tropics. We also question the suitability of the two-layer soil moisture hypothesis as a basis for management practices to control the ingress of woody species into grasslands and open savannas.  相似文献   

16.
Summary Application of slow release fertiliser to small (0.5x1 m) plots within a serpentine annual grassland community led to significant increases in above-ground biomass and a shift in species relative abundances. In fertilised plots the native forb species which usually dominate the grassland were almost totally replaced by grasses. In the years following initial fertiliser application, a heavy mulch formed from the previous year's grass growth allowed establishment of grass species such as Bromus mollis but significantly reduced forb establishment. Gopher disturbance of fertilised plots in the second and third years of the experiment effectively removed the grass mulch and allowed re-establishment of forb species.  相似文献   

17.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

18.
 Damage from a dormant-season windstorm in a 3-year-old Populus research trial differed among four clones and three spacings and between monoclonal and polyclonal plots. Clonal differences in susceptibility to toppling (or leaning) were associated with both above- and below-ground characteristics. Susceptible clones had less taper in the lower stem and more weight in branches on the upper stem. The most susceptible clone also had the most above-ground biomass per unit of cross-sectional root area. The other susceptible clone had the least root system development in the windward quadrants. Wind toppling was least at the closest spacing. Apparently, mutual support was more important than individual tree characteristics from which the most damage would be expected at the closest spacing. Differences between paired trees of the same clone and spacing which did or did not topple were primarily associated with distribution of root systems by compass quadrant or depth. At the closest spacing where crown sway would have been minimized, trees which did not topple had greater cross-sectional root area in the windward direction than trees which did topple. At the widest spacing where crown sway would have been greatest, windfirm trees had greater cross-sectional root area than non-windfirm trees in both the windward and leeward directions. Toppling was reduced in polyclonal plots; this reduction may have been the result of more rapid stand differentiation in the polyclonal plots or reduction in the “domino effect” by inclusion of more windfirm clones in the mixture. Received: 23 October 1995 / Accepted: 22 February 1996  相似文献   

19.
帽儿山温带落叶阔叶林通量塔风浪区生物量空间格局   总被引:3,自引:2,他引:1  
刘帆  王传宽  王兴昌  张建双  张著  王家骏 《生态学报》2016,36(20):6506-6519
采用网格法在帽儿山温带落叶阔叶林通量塔风浪区(1500 m×400 m)内设置直径为20 m的圆形样地106个,运用地统计学方法和回归分析法研究了乔木生物量空间格局及其驱动因子。结果表明,风浪区总生物量平均值为153.63 Mg/hm~2,变异系数为37.89%;根冠比平均0.25(变化范围0.18—0.36)。总生物量、地上生物量和地下生物量的空间自相关显著,半方差模型的结构比分别为0.50、0.61和0.50,空间异质性尺度分别为276 m、198 m和375 m。硬阔叶林与杂木林的生物量组分和根冠比差异均不显著,但以胸高断面积(BA)为协变量,生物量组分差异显著。硬阔叶林和杂木林生物量组分与BA均呈极显著的线性正相关关系,BA可以解释总生物量和地上生物量空间变异的85%以上,表明局域尺度上BA可作为森林乔木生物量的预测因子。两种林型的生物量与优势高呈对数线性关系,但相关程度较低(R~20.41)。杂木林的各生物量组分与坡度显著正相关,但硬阔叶林的关系不显著。帽儿山落叶阔叶林乔木生物量受BA、优势高、林型、坡度和坡向共同驱动而存在空间变异,因此在整合通量塔与地面碳汇测量时需要考虑空间异质性。  相似文献   

20.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号