首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

We previously suggested that abnormal sleep behaviors, i.e., as found in parasomnias, may often be the expression of increased activity of the reward system during sleep. Because nightmares and sleepwalking predominate during REM and NREM sleep respectively, we tested here whether exploratory excitability, a waking personality trait reflecting high activity within the mesolimbic dopaminergic (ML-DA) system, may be associated with specific changes in REM and NREM sleep patterns in these two sleep disorders.

Methods

Twenty-four unmedicated patients with parasomnia (12 with chronic sleepwalking and 12 with idiopathic nightmares) and no psychiatric comorbidities were studied. Each patient spent one night of sleep monitored by polysomnography. The Temperament and Character Inventory (TCI) was administered to all patients and healthy controls from the Geneva population (n = 293).

Results

Sleepwalkers were more anxious than patients with idiopathic nightmares (Spielberger Trait anxiety/STAI-T), but the patient groups did not differ on any personality dimension as estimated by the TCI. Compared to controls, parasomnia patients (sleepwalkers together with patients with idiopathic nightmares) scored higher on the Novelty Seeking (NS) TCI scale and in particular on the exploratory excitability/curiosity (NS1) subscale, and lower on the Self-directedness (SD) TCI scale, suggesting a general increase in reward sensitivity and impulsivity. Furthermore, parasomnia patients tended to worry about social separation persistently, as indicated by greater anticipatory worry (HA1) and dependence on social attachment (RD3). Moreover, exploratory excitability (NS1) correlated positively with the severity of parasomnia (i.e., the frequency of self-reported occurrences of nightmares and sleepwalking), and with time spent in REM sleep in patients with nightmares.

Conclusions

These results suggest that patients with parasomnia might share common waking personality traits associated to reward-related brain functions. They also provide further support to the notion that reward-seeking networks are active during human sleep.  相似文献   

2.

Study Objectives

We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity.

Design

High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention.

Setting

Sound-attenuated sleep research room.

Patients or Participants

Twenty-four long-term meditators and twenty-four meditation-naïve controls.

Interventions

Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation.

Measurements and Results

We found an increase in EEG low-frequency oscillatory activities (1–12 Hz, centered around 7–8 Hz) over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25–40 Hz). There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience.

Conclusions

This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.  相似文献   

3.

Background

Diurnal emotional experiences seem to affect several characteristics of sleep architecture. However, this influence remains unclear, especially for positive emotions. In addition, electrodermal activity (EDA), a sympathetic robust indicator of emotional arousal, differs depending on the sleep stage. The present research has a double aim: to identify the specific effects of pre-sleep emotional states on the architecture of the subsequent sleep period; to relate such states to the sympathetic activation during the same sleep period.

Methods

Twelve healthy volunteers (20.1 ± 1.0 yo.) participated in the experiment and each one slept 9 nights at the laboratory, divided into 3 sessions, one per week. Each session was organized over three nights. A reference night, allowing baseline pre-sleep and sleep recordings, preceded an experimental night before which participants watched a negative, neutral, or positive movie. The third and last night was devoted to analyzing the potential recovery or persistence of emotional effects induced before the experimental night. Standard polysomnography and EDA were recorded during all the nights.

Results

Firstly, we found that experimental pre-sleep emotional induction increased the Rapid Eye Movement (REM) sleep rate following both negative and positive movies. While this increase was spread over the whole night for positive induction, it was limited to the second half of the sleep period for negative induction. Secondly, the valence of the pre-sleep movie also impacted the sympathetic activation during Non-REM stage 3 sleep, which increased after negative induction and decreased after positive induction.

Conclusion

Pre-sleep controlled emotional states impacted the subsequent REM sleep rate and modulated the sympathetic activity during the sleep period. The outcomes of this study offer interesting perspectives related to the effect of diurnal emotional influences on sleep regulation and open new avenues for potential practices designed to alleviate sleep disturbances.  相似文献   

4.

Background

On-call duty among medical interns is characterized by sleep deprivation and stressful working conditions, both of which alter cardiac autonomic modulation. We hypothesized that sleep stability decreased in medical interns during on-call duty. We used cardiopulmonary-coupling (CPC) analysis to test our hypothesis.

Methods

We used electrocardiogram (ECG)-based CPC analysis to quantify physiological parameters of sleep stability in 13 medical interns during on-call and on-call duty-free periods. There were ten 33.5-h on-call duty shifts per month for interns, each followed by 2 on-call duty-free days, over 3 months. Measurements during sleep were collected before, during, and after an on-call shift. Measurements were repeated 3 months later during an on-call duty-free period.

Results

The medical interns had significantly reduced stable sleep, and displayed increased latency to the first epoch of stable sleep during the on-call night shift, compared to the pre-call and on-call duty-free nights. Interns also had significantly increased rapid-eye-movement (REM) sleep during the on-call night shift, compared to the pre-call and on-call duty-free nights.

Conclusion

Medical interns suffer disrupted sleep stability and continuity during on-call night shifts. The ECG-based CPC analysis provides a straightforward means to quantify sleep quality and stability in medical staff performing shift work under stressful conditions.  相似文献   

5.

Objective

To assess the specific prefrontal activity in comparison to those in the other main cortical areas in primary insomnia patients and in good sleepers.

Methods

Fourteen primary insomnia patients and 11 good sleepers were included in the analysis. Participants completed one night of polysomnography in the sleep lab. Power spectra were calculated during the NREM (Non-rapid eyes movements) and the REM (Rapid eyes movements) sleep periods at prefrontal, occipital, temporal and central electrode positions.

Results

During the NREM sleep, the power spectra did not differ between groups in the prefrontal cortex; while primary insomnia patients exhibited a higher beta power spectrum and a lower delta power spectrum compared to good sleepers in other areas. During the REM sleep, the beta1 power spectrum was lower in the prefrontal cortex in primary insomnia patients compared to good sleepers; while no significant difference between groups was obtained for the other areas.

Conclusions

The present study shows a specific prefrontal sleep pattern during the whole sleep period. In addition, we suggest that primary insomnia patients displayed a dysfunction in the reactivation of the limbic system during the REM sleep and we give additional arguments in favor of a sleep-protection mechanism displayed by primary insomnia patients.  相似文献   

6.

Objective

To investigate response inhibition after total sleep deprivation (TSD) and the restorative effects of one night of recovery sleep (RS).

Methods

Fourteen healthy male participants performed a visual Go/NoGo task, and electroencephalogram recordings were conducted at five time points: (1) baseline, (2) after 12 h of TSD, (3) after 24 h of TSD, (4) after 36 h of TSD, and (5) following 8 h of RS. The dynamic changes in response inhibition during TSD and after 8 h of RS were investigated by examining the NoGo-N2 and NoGo-P3 event-related potential components.

Results

Compared with baseline, NoGo-P3 amplitudes were decreased, while the NoGo-N2 latency increased along with the awake time prolonged. NoGo anteriorization, which was minimized after 24 h of TSD, progressively decreased with increasing TSD. After 8 h of RS, recoveries of both the NoGo-P3 amplitude and NoGo-N2 latency in the prefrontal cortex were observed compared with the values after 36 h of TSD.

Conclusion

TSD induced a dose-dependent functional decline in the response inhibition of NoGo-N2 and NoGo-P3 on prefrontal cortex activation, and 8 h of RS resulted in recovery or maintenance of the response inhibition. However, it was not restored to baseline levels.

Limitations

Participants were chosen male college students only, thus the findings cannot be generalized to older people and women. Additionally, the sample size was small, and, thus, speculations on the meaning of the results of this study should be cautious. The EEG continuous recording should be employed to monitor the decline of alertness following TSD.  相似文献   

7.

Background

Obstructive Sleep Apnea (OSA) describes intermittent collapse of the airway during sleep, for which continuous positive airway pressure (CPAP) is often prescribed for treatment. Prior studies suggest that discontinuation of CPAP leads to a gradual, rather than immediate return of baseline severity of OSA. The objective of this study was to determine the extent of OSA recurrence during short intervals of CPAP depressurization during sleep.

Methods

Nine obese (BMI = 40.4 ± 3.5) subjects with severe OSA (AHI = 88.9 ± 6.8) adherent to CPAP were studied during one night in the sleep laboratory. Nasal CPAP was delivered at therapeutic (11.1 ± 0.6 cm H20) or atmospheric pressure, in alternating fashion for 1-hour periods during the night. We compared sleep architecture and metrics of OSA during CPAP-on and CPAP-off periods.

Results

8/9 subjects tolerated CPAP withdrawal. The average AHI during CPAP-on and CPAP-off periods was 3.6 ± 0.6 and 15.8 ± 3.6 respectively (p<0.05). The average 3% ODI during CPAP-on and CPAP-off was 4.7 ± 2 and 20.4 ± 4.7 respectively (p<0.05). CPAP depressurization also induced more awake (p<0.05) and stage N1 (p<0.01) sleep, and less stage REM (p<0.05) with a trend towards decreased stage N3 (p = 0.064).

Conclusion

Acute intermittent depressurization of CPAP during sleep led to deterioration of sleep architecture but only partial re-emergence of OSA. These observations suggest carryover effects of CPAP.  相似文献   

8.

Aim

The present study aimed to analyse the autonomic nervous system activity using heart rate variability (HRV) to detect sleep disordered breathing (SDB) patients with and without excessive daytime sleepiness (EDS) before sleep onset.

Methods

Two groups of 20 patients with different levels of daytime sleepiness -sleepy group, SG; alert group, AG- were selected consecutively from a Maintenance of Wakefulness Test (MWT) and Multiple Sleep Latency Test (MSLT) research protocol. The first waking 3-min window of RR signal at the beginning of each nap test was considered for the analysis. HRV was measured with traditional linear measures and with time-frequency representations. Non-linear measures -correntropy, CORR; auto-mutual-information function, AMIF- were used to describe the regularity of the RR rhythm. Statistical analysis was performed with non-parametric tests.

Results

Non-linear dynamic of the RR rhythm was more regular in the SG than in the AG during the first wakefulness period of MSLT, but not during MWT. AMIF (in high-frequency and in Total band) and CORR (in Total band) yielded sensitivity > 70%, specificity >75% and an area under ROC curve > 0.80 in classifying SG and AG patients.

Conclusion

The regularity of the RR rhythm measured at the beginning of the MSLT could be used to detect SDB patients with and without EDS before the appearance of sleep onset.  相似文献   

9.

Background

Cognitive performance deteriorates during extended wakefulness and circadian phase misalignment, and some individuals are more affected than others. Whether performance is affected similarly across cognitive domains, or whether cognitive processes involving Executive Functions are more sensitive to sleep and circadian misalignment than Alertness and Sustained Attention, is a matter of debate.

Methodology/Principal Findings

We conducted a 2 × 12-day laboratory protocol to characterize the interaction of repeated partial and acute total sleep deprivation and circadian phase on performance across seven cognitive domains in 36 individuals (18 males; mean ± SD of age = 27.6±4.0 years). The sample was stratified for the rs57875989 polymorphism in PER3, which confers cognitive susceptibility to total sleep deprivation. We observed a deterioration of performance during both repeated partial and acute total sleep deprivation. Furthermore, prior partial sleep deprivation led to poorer cognitive performance in a subsequent total sleep deprivation period, but its effect was modulated by circadian phase such that it was virtually absent in the evening wake maintenance zone, and most prominent during early morning hours. A significant effect of PER3 genotype was observed for Subjective Alertness during partial sleep deprivation and on n-back tasks with a high executive load when assessed in the morning hours during total sleep deprivation after partial sleep loss. Overall, however, Subjective Alertness and Sustained Attention were more affected by both partial and total sleep deprivation than other cognitive domains and tasks including n-back tasks of Working Memory, even when implemented with a high executive load.

Conclusions/Significance

Sleep loss has a primary effect on Sleepiness and Sustained Attention with much smaller effects on challenging Working Memory tasks. These findings have implications for understanding how sleep debt and circadian rhythmicity interact to determine waking performance across cognitive domains and individuals.  相似文献   

10.

Objective

This study sought to evaluate associations between sleep time and bicycle accidents, falls under various circumstances, and dental injuries in adolescents.

Methods

A total of 61,696 participants ranging from 12 to 18 years of age who completed the Korea Youth Risk Behavior Web-based Survey (KYRBWS) in 2013 were enrolled in this study. Bicycle riding accidents were analyzed for 17,232 bicycle-riding participants. Data were collected regarding the weekday sleep duration for the most recent 7 days, which was categorized as < 5.5 h, 5.5–6.5 h, 6.5–7.5 h, or ≥ 7.5 h per day, and the incidence of bicycle accidents, slips and falls under various circumstances, and dental injuries in the most recent 12 months. Adjusted odds ratios (aORs) were calculated among sleep groups for bicycle accidents, slips and falls, and dental injuries using simple and multiple logistic regression analyses with complex sampling.

Results

Bicycle riding accidents and slips and falls in classrooms, corridors, the ground, toilets, stairs, and other unspecified situations showed positive correlations with sleep deprivation. Comparisons of groups with ≥ 7.5 h sleep, < 5.5 h, 5.5–6.5 h sleep, and 6.5–7.5 h sleep revealed increased associations with slips and falls under various circumstances. In particular, the aORs were higher in the groups with less sleep (aOR of the 5.5 h group > the 5.5–6.5 h group > the 6.5–7.5 h group). There was no significant relationship between sleep deprivation and dental injury.

Conclusions

This study demonstrated that sleep deprivation among Korean adolescents was associated with bicycle accidents and falls at home and school. Thus, adequate sleep may be needed to prevent accidents and falls.  相似文献   

11.

Background

The pathophysiology of transient global amnesia (TGA) is not fully understood. Previous studies using single photon emission computed tomography (SPECT) have reported inconclusive results regarding cerebral perfusion. This study was conducted to identify the patterns of regional cerebral blood flow (rCBF) in TGA patients via longitudinal SPECT analysis. An association between the observed SPECT patterns and a pathophysiological mechanism was considered.

Methods

Based on the TGA registry database of Seoul National University Bundang Hospital, 22 TGA patients were retrospectively identified. The subjects underwent initial Tc-99m-ethyl cysteinate dimer (ECD) SPECT within 4 days of an amnestic event and underwent follow-up scans approximately 6 months later. The difference in ECD uptake between the two scans was measured via voxel-based whole brain analysis, and the quantified ECD uptake was tested using a paired t-test.

Results

The TGA patients had significantly decreased cerebral perfusion at the left precuneus (P<0.001, uncorrected) and at the left superior parietal and inferior temporal gyrus according to the voxel-based whole brain analysis (P<0.005, uncorrected). A difference in the quantified ECD uptake between the 2 scans was also found at the left precuneus among the 62 cortical volumes of interest (P = 0.018, Cohen’s d = -0.25).

Conclusion

We identified left hemispheric lateralized hypoperfusion that may be related to posterior medial network disruption. These findings may be a contributing factor to the pathophysiology of TGA.  相似文献   

12.

Background

There is accumulating evidence that anxiety impairs sleep. However, due to high sleep variability in anxiety disorders, it has been difficult to state particular changes in sleep parameters caused by anxiety. Sleep profiling in an animal model with extremely high vs. low levels of trait anxiety might serve to further define sleep patterns associated with this psychopathology.

Methodology/Principal Findings

Sleep-wake behavior in mouse lines with high (HAB), low (LAB) and normal (NAB) anxiety-related behaviors was monitored for 24 h during baseline and recovery after 6 h sleep deprivation (SD). The amounts of each vigilance state, sleep architecture, and EEG spectral variations were compared between the mouse lines. In comparison to NAB mice, HAB mice slept more and exhibited consistently increased delta power during non-rapid eye movement (NREM) sleep. Their sleep patterns were characterized by heavy fragmentation, reduced maintenance of wakefulness, and frequent intrusions of rapid eye movement (REM) sleep. In contrast, LAB mice showed a robust sleep-wake rhythm with remarkably prolonged sleep latency and a long, persistent period of wakefulness. In addition, the accumulation of delta power after SD was impaired in the LAB line, as compared to HAB mice.

Conclusions/Significance

Sleep-wake patterns were significantly different between HAB and LAB mice, indicating that the genetic predisposition to extremes in trait anxiety leaves a biological scar on sleep quality. The enhanced sleep demand observed in HAB mice, with a strong drive toward REM sleep, may resemble a unique phenotype reflecting not only elevated anxiety but also a depression-like attribute.  相似文献   

13.

Background

We have previously shown that modafinil promotes wakefulness via dopamine receptor D1 and D2 receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc) that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal.

Methodology/Principal Findings

In the present study, we further explored the role of NAc in sleep-wake cycle and sleep homeostasis by ablating the NAc core and shell, respectively, and examined arousal response following modafinil administration. We found that discrete NAc core and shell lesions produced 26.5% and 17.4% increase in total wakefulness per day, respectively, with sleep fragmentation and a reduced sleep rebound after a 6-hr sleep deprivation compared to control. Finally, NAc core but not shell lesions eliminated arousal effects of modafinil.

Conclusions/Significance

These results indicate that the NAc regulates sleep-wake behavior and mediates arousal effects of the midbrain dopamine system and stimulant modafinil.  相似文献   

14.

Purpose

Despite recommendations for 99mTc-tetrofosmin dual tracer imaging for hyperparathyroidism in current guidelines, no report was published on dual-isotope 99mTc-tetrofosmin and 123I sodium iodide single-photon-emission-computed-tomography (SPECT). We evaluated diagnostic accuracy and the impact of preoperative SPECT on the surgical procedures and disease outcomes.

Methods

Analysis of 70 consecutive patients with primary hyperparathyroidism and 20 consecutive patients with tertiary hyperparathyroidism. Imaging findings were correlated with surgical results. Concomitant thyroid disease, pre- and postoperative laboratory measurements, histopathological results, type and duration of surgery were assessed.

Results

In primary hyperparathyroidism, SPECT had a sensitivity of 80% and a positive predictive value of 93% in patient-based analysis. Specificity was 99% in lesion-based analysis. Patients with positive SPECT elicit higher levels of parathyroid hormone and higher weight of resected parathyroids than SPECT-negative patients. Duration of parathyroid surgery was on average, approximately 40 minutes shorter in SPECT-positive than in SPECT-negative patients (89±46 vs. 129±41 minutes, p=0.006); 86% of SPECT-positive and 50% of SPECT-negative patients had minimal invasive surgery (p = 0.021). SPECT had lower sensitivity (60%) in patients with tertiary hyperparathyroidism; however, 90% of these patients had multiple lesions and all of these patients had bilateral lesions.

Conclusion

Dual-isotope SPECT with 99mTc-tetrofosmin and 123I sodium iodide has a high diagnostic value in patients with primary hyperparathyroidism and allows for saving of operation time. Higher levels of parathyroid hormone and higher glandular weight facilitated detection of parathyroid lesion. Diagnostic accuracy of preoperative imaging was lower in patients with tertiary hyperparathyroidism.  相似文献   

15.

Background

It has been suggested that disturbed activity of the autonomic nervous system is one of the factors involved in gastroesophageal reflux (GER) in adults. We sought to establish whether transient ANS dysfunction (as assessed by heart rate variability) is associated with the occurrence of GER events in neonates during sleep and wakefulness.

Methods

Nineteen neonates with suspected GER underwent simultaneous, synchronized 12-hour polysomnography and esophageal multichannel impedance-pH monitoring. We compared changes in HRV parameters during three types of periods (control and prior to and during reflux) with respect to the vigilance state.

Results

The vigilance state influenced the distribution of GER events (P<0.001), with 53.4% observed during wakefulness, 37.6% observed during active sleep and only 9% observed during quiet sleep. A significant increase in the sympathovagal ratio (+32%, P=0.013) was observed in the period immediately prior to reflux (due to a 15% reduction in parasympathetic activity (P=0.017)), relative to the control period. This phenomenon was observed during both wakefulness and active sleep.

Conclusion

Our results showed that GER events were preceded by a vigilance-state-independent decrease in parasympathetic tone. This suggests that a pre-reflux change in ANS activity is one of the factors contributing to the mechanism of reflux in neonates.  相似文献   

16.

Background

We evaluated if exposure to RF-EMF was associated with reported quality of sleep in 2,361 children, aged 7 years.

Methods

This study was embedded in the Amsterdam Born Children and their Development (ABCD) birth cohort study. When children were about five years old, school and residential exposure to RF-EMF from base stations was assessed with a geospatial model (NISMap) and from indoor sources (cordless phone/WiFi) using parental self-reports. Parents also reported their children’s use of mobile or cordless phones. When children were seven years old, we evaluated sleep quality as measured with the Child Sleep Habits Questionnaire (CSHQ) filled in by parents. Of eight CSHQ subscales, we evaluated sleep onset delay, sleep duration, night wakenings, parasomnias and daytime sleepiness with logistic or negative binomial regression models, adjusting for child’s age and sex and indicators of socio-economic position of the parents. We evaluated the remaining three subscales (bedtime resistance, sleep anxiety, sleep disordered breathing) as unrelated outcomes (negative control) because these were a priori hypothesised not to be associated with RF-EMF.

Results

Sleep onset delay, night wakenings, parasomnias and daytime sleepiness were not associated with residential exposure to RF-EMF from base stations. Sleep duration scores were associated with RF-EMF levels from base stations. Higher use mobile phones was associated with less favourable sleep duration, night wakenings and parasomnias, and also with bedtime resistance. Cordless phone use was not related to any of the sleeping scores.

Conclusion

Given the different results across the evaluated RF-EMF exposure sources and the observed association between mobile phone use and the negative control sleep scale, our study does not support the hypothesis that it is the exposure to RF-EMF that is detrimental to sleep quality in 7-year old children, but potentially other factors that are related to mobile phone usage.  相似文献   

17.

Purpose

To study performance of a contact lens sensor (CLS) for 24-hour monitoring of IOP-related short-term patterns and compare with IOP obtained by pneumatonometry.

Methods

Prospective clinical trial. Thirty-one healthy volunteers and 2 glaucoma patients were housed for 24 hours in a sleep laboratory. One randomly selected eye was fitted with a CLS (Triggerfish, Sensimed, Switzerland), which measures changes in ocular circumference. In the contralateral eye, IOP measurements were taken using a pneumatonometer every two hours with subjects in the habitual body positions. Heart rate (HR) was measured 3 times during the night for periods of 6 minutes separated by 2 hours. Performance of CLS was defined in two ways: 1) recording the known pattern of IOP increase going from awake (sitting position) to sleep (recumbent), defined as the wake/sleep (W/S) slope and 2) accuracy of the ocular pulse frequency (OPF) concurrent to that of the HR interval. Strength of association between overall CLS and pneumatonometer curves was assessed using coefficients of determination (R2).

Results

The W/S slope was statistically significantly positive in both eyes of each subject (CLS, 57.0 ± 40.5 mVeq/h, p<0.001 and 1.6 ± 0.9 mmHg/h, p<0.05 in the contralateral eye). In all, 87 CLS plots concurrent to the HR interval were evaluated. Graders agreed on evaluability for OPF in 83.9% of CLS plots. Accuracy of the CLS to detect the OPF was 86.5%. Coefficient of correlation between CLS and pneumatonometer for the mean 24-h curve was R2 = 0.914.

Conclusions

CLS measurements compare well to the pneumatonometer and may be of practical use for detection of sleep-induced IOP changes. The CLS also is able to detect ocular pulsations with good accuracy in a majority of eyes.

Trial Registration

ClinicalTrials.gov NCT01390779  相似文献   

18.

Objectives

This study aimed to investigate the relationship between individual natural light exposure, sleep need, and depression at two latitudes, one extreme with a few hours of light per day during winter, and the other with equal hours of light and darkness throughout the year.

Methods

This cross-sectional study included a sample of Brazilian workers (Equatorial, n = 488 workers) and a Swedish sample (Arctic, n = 1,273).

Results

The reported mean total natural light exposure per 4-week cycle differed significantly between the Equatorial and Arctic regions. However, shiftworkers from both sites reported similar hours of natural light exposure. Short light exposure was a predictor for insufficient sleep.

Conclusion

Reduced exposure to natural light appears to increase the perception of obtaining insufficient sleep. Arctic workers were more prone to develop depression than Equatorial workers.  相似文献   

19.

Objectives

The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections, which hold a key function in segregating internally and externally directed awareness information. Previous task-related studies have revealed altered activities of the thalamus after total sleep deprivation (TSD). However, it is still unclear how TSD impacts on the communication between the thalamus and cerebral cortex. In this study, we examined changes of thalamocortical functional connectivity after 36 hours of total sleep deprivation by using resting state function MRI (fMRI).

Materials and Methods

Fourteen healthy volunteers were recruited and performed fMRI scans before and after 36 hours of TSD. Seed-based functional connectivity analysis was employed and differences of thalamocortical functional connectivity were tested between the rested wakefulness (RW) and TSD conditions.

Results

We found that the right thalamus showed decreased functional connectivity with the right parahippocampal gyrus, right middle temporal gyrus and right superior frontal gyrus in the resting brain after TSD when compared with that after normal sleep. As to the left thalamus, decreased connectivity was found with the right medial frontal gyrus, bilateral middle temporal gyri and left superior frontal gyrus.

Conclusion

These findings suggest disruptive changes of the thalamocortical functional connectivity after TSD, which may lead to the decline of the arousal level and information integration, and subsequently, influence the human cognitive functions.  相似文献   

20.

Background

Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift.

Methodology/Principal Findings

To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05).

Conclusions/Significance

These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号