首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.  相似文献   

2.
The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA expression system was used to demonstrate the presence of an internal ribosomal entry sequence (IRES) within the 5'-untranslated region of the cat-1 mRNA. This study shows that IRES-mediated translation of the cat-1 mRNA is regulated by amino acid availability. This IRES causes an increase in translation under conditions of amino acid starvation. In contrast, cap-dependent protein synthesis is inhibited during amino acid starvation, which is well correlated with decreased phosphorylation of the cap-binding protein, eIF4E. These findings reveal a new aspect of mammalian gene expression and regulation that provides a cellular stress response; when the nutrient supply is limited, the activation of IRES-mediated translation of mammalian mRNAs results in the synthesis of proteins essential for cell survival.  相似文献   

3.
Transport of the essential amino acids arginine and lysine is critical for the survival of mammalian cells. The adaptive response to nutritional stress involves increased translation of the arginine/lysine transporter (cat-1) mRNA via an internal ribosome entry site (IRES) within the mRNA leader. Induction of cat-1 IRES activity requires both translation of a small upstream open reading frame (uORF) within the IRES and phosphorylation of the translation initiation factor eIF2alpha. We show here that translation of the upstream ORF unfolds an inhibitory structure in the mRNA leader, eliciting a conformational change that yields an active IRES. The IRES, whose activity is induced by amino acid starvation, is created by RNA-RNA interactions between the 5' end of the leader and downstream sequences. This study suggests that the structure of the IRES is dynamic and regulation of this RNA structure is a mechanism of translational control.  相似文献   

4.
5.
6.
The integrity of eukaryotic translation initiation factor (eIF) interactions in ribosomal pre-initiation complexes is critical for the proper regulation of GCN4 mRNA translation in response to amino acid availability. Increased phosphorylation of eIF2 under amino acid starvation conditions leads to a corresponding increase in GCN4 mRNA translation. The carboxyl-terminal domain (CTD) of eIF5 (eIF5-CTD) has been identified as a potential nucleation site for pre-initiation complex assembly. To further characterize eIF5 and delineate its role in GCN4 translational control, we isolated mutations leading to temperature sensitivity (Ts- phenotype) targeted at TIF5, the structural gene encoding eIF5 in yeast (Saccharomyces cerevisiae). Nine single point mutations were isolated, in addition to an allele in which the last 15 amino acids were deleted. The nine point mutations clustered in the eIF5-CTD, which contains two conserved aromatic/acidic boxes. Six of the point mutations derepressed GCN4 translation independent of eIF2 phosphorylation (Gcd- phenotype) at a permissive temperature, directly implicating eIF5-CTD in the eIF2/GTP/Met-tRNA(i)Met ternary complex binding process required for GCN4 translational control. In addition, stronger restriction of eIF5-CTD function at an elevated temperature led to failure to derepress GCN4 translation (Gcn- phenotype) in all of the mutants, most likely due to leaky scanning of the first upstream open reading frame of GCN4 mRNA. This latter result directly implicates eIF5-CTD in the process of accurate scanning for, or recognition of, AUG codons. Taken together, our results indicate that eIF5-CTD plays a critical role in both the assembly of the 43S complex and the post-assembly process in the 48S complex, likely during the scanning process.  相似文献   

7.
The cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene is known to be regulated by amino acid availability. It is shown here that cat-1 gene expression is also induced by Glc limitation, which causes a 7-fold increase in cat-1 mRNA, a 30-fold induction of Cat-1 protein levels, and a 4-fold stimulation of arginine uptake. Glc limitation is known to induce the unfolded protein response (UPR) by altering protein glycosylation in the endoplasmic reticulum (ER). The studies here demonstrate that synthesis of Cat-1 occurs during the UPR when global protein synthesis is inhibited. The 5'-UTR of the cat-1 mRNA contains an internal ribosomal entry site (IRES) that is activated by amino acid starvation by a mechanism that involves phosphorylation of the translation initiation factor, eukaryotic initiation factor 2alpha, by the GCN2 kinase. It is shown here that translation from the cat-1/IRES is also induced by Glc deprivation in a manner dependent upon phosphorylation of eukaryotic initiation factor 2alpha by the transmembrane ER kinase, PERK. Because PERK is a key constituent of the UPR, it is concluded that induction of cat-1 gene expression is part of the adaptive response of cells to ER stress. These results also demonstrate that regulation of IRES activity in cellular mRNAs is part of the mechanism by which the UPR protects cells from unfolded proteins in the ER.  相似文献   

8.
9.
10.
11.
12.
The Saccharomyces cerevisiae GCN4 mRNA 5'-leader contains four upstream open reading frames (uORFs) and the CPA1 leader contains a single uORF. To determine how these uORFs control translation, we examined mRNAs containing these leaders in cell-free translation extracts to determine where ribosomes were loaded first and where they were loaded during steady-state translation. Ribosomes predominantly loaded first at GCN4 uORF1. Following its translation, but not the translation of uORF4, they efficiently reinitiated protein synthesis at Gcn4p. Adding purified eIF2 increased reinitiation at uORFs 3 or 4 and reduced reinitiation at Gcn4p. This indicates that eIF2 affects the site of reinitiation following translation of GCN4 uORF1 in vitro. In contrast, for mRNA containing the CPA1 uORF, ribosomes reached the downstream start codon by scanning past the uORF. Addition of arginine caused ribosomes that had synthesized the uORF polypeptide to stall at its termination codon, reducing loading at the downstream start codon, apparently by blocking scanning ribosomes, and not by affecting reinitiation. The GCN4 and CPA1 uORFs thus control translation in fundamentally different ways.  相似文献   

13.
The cytoplasmic fate of mRNAs is dictated by the relative activities of the intimately connected mRNA decay and translation initiation pathways. In this study, we have found that yeast strains compromised for stages downstream of deadenylation in the major mRNA decay pathway are incapable of inhibiting global translation initiation in response to stress. In the past, the paradigm of the eIF2alpha kinase-dependent amino acid starvation pathway in yeast has been used to evaluate this highly conserved stress response in all eukaryotic cells. Using a similar approach we have found that even though the mRNA decay mutants maintain high levels of general translation, they exhibit many of the hallmarks of amino acid starvation, including increased eIF2alpha phosphorylation and activated GCN4 mRNA translation. Therefore, these mutants appear translationally oblivious to decreased ternary complex abundance, and we propose that this is due to higher rates of mRNA recruitment to the 40S ribosomal subunit.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号