首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The decrease in diffusive conductance of a leaf exposed to waterstress or to exogenous abscisic acid (ABA) was smaller in leavesof sunflower plants (Helianthus annuus L. cv. NK285) that hadbeen grown in a phytotron in humid air than in leaves of sunflowersgrown outdoors. Stomata of the phytotron-grown plants were slowerto close after detachment of a leaf than those of the outdoorplants. When stomata closed rapidly, as they did in detachedleaves and after treatment with ABA, the extent of closure wasvaried over the leaf's surface, in particular in the case ofphytotron-grown plants, and the extent of the heterogeneitywas greater in the phytotrongrown plants than in the outdoorplants. When stomata closed gradually, for example, under conditionsof limited moisture in the soil, closure occurred uniformlyover leaves of plants of both types. The smaller decrease indiffusive conductance of leaves from phytotron-grown plantsafter treatment with ABA resulted from the presence of patcheson the surface in which stomata remained open. The smaller decreaseof diffusive conductance in the phytotron-grown plants underconditions of limited moisture in the soil resulted from theuniformly lower responsiveness of stomata on a leaf to the decreasein water potential. When estimates are made of the intercellularconcentration of CO2 (Ci) from gas-exchange measurements, heterogeneityin stomatal closure should be monitored when stomata close rapidly,in particular in plants grown in humid air, because heterogeneousstomatal closure can lead to overestimates of Ci. (Received April 18, 1994; Accepted May 25, 1995)  相似文献   

2.
The response of w-1, a wilty sunflower (Helianthus annuus L.)mutant, to water stress is described in comparison with thecontrol line (W-1). Detached leaves of w-1 strongly dehydratedduring the first 30 min without significant changes in leafconductance, whereas W-1 responded rapidly to water loss byreducing stomatal aperture. After 2 h stress ABA increased slightlyin w-1, while W-1 leaves showed a 20-fold increase. When waterstress was imposed to potted plants by water withholding, w-1quickly dehydrated, and lost turgor, while W-1 maintained positiveturgor values for a longer period. Wild-type plants respondedto small changes in leaf water potential by accumulating ABAand by closing stomata, whereas in the mutant significant changesin ABA content and in stomatal conductance were found only atvery low water potentials. In another experiment in which waterwas withheld under high relative humidity, when soil water contentstarted to decrease W-1 rapidly closed stomata in the absenceof any change in leaf water status and the reduction in conductancewas paralleled by a rise in xylem sap ABA concentration. Bycontrast the mutant started to accumulate ABA in the xylem sapand to close stomata when soil water content and leaf waterpotential were dramatically reduced. The low endogenous ABAlevels and the inability to synthesize the hormone rapidly eitherin the leaves or in the roots seem to be responsible for thehigh sensitivity of w-1 to water stress. Key words: ABA, Helianthus annuus L, water relations, stomatal conductance, drought, wilty mutant  相似文献   

3.
Leaves from in vitro and greenhouse cultured plants of Malusdomestica (Borkh.) cv. Mark were subjected to 4 h of darkness;4 h of 1 M mannitol induced water stress; 1 h of 10–4M to 10–7 M cis-trans abscisic acid (ABA) treatment; 1h of 0.12% atmospheric CO2. Stomatal closure was determinedby microscopic examination of leaf imprints. In all treatments,less than 5% of the stomata from leaves of in vitro culturedplants were closed. The diameter of open stomata on leaves fromin vitro culture remained at 8 µm. In contrast, an averageof 96% of the stomata on leaves of greenhouse grown plants wereclosed after 4 h in darkness; 56% after 4 h of mannitol inducedwater stress; 90% after 1 h of 10–4 M ABA treatment; 61%after 1 h in an atmosphere of 0.12% CO2. Stomata of in vitroapple leaves did not seem to have a closure mechanism, but acquiredone during acclimatization to the greenhouse environment. Thelack of stomatal closure in in vitro plants was the main causeof rapid water loss during transfer to low relative humidity.  相似文献   

4.
Morphological and physiological characteristics of micropropagatedplants of Delphinium cv. Princess Caroline were studied. Leavesproduced in vitro showed poor control of water loss which appearsto result from restricted responses by stomata and not frompoor cuticular development. Stomata of leaves produced in vitrowere larger and more frequent than those produced during acclimatization.Despite the fact that stomata from isolated epidermis of leavesproduced in vitro reduced their apertures when exposed to turgor-reducingtreatments, they did not close fully. This, together with highstomatal frequencies might explain the poor control of waterloss shown by intact leaves produced in culture when exposedto dry air. While leaves from acclimatized plants showed almostcomplete closure with ABA, low water potentials, darkness andCO2, stomata from leaves produced in vitro reduced their apertureswhen exposed to those factors, but only to a limit. Therefore,stomata from leaves cultured in vitro seem to be partially functional,but some physiological or anatomical alteration prevents themfrom closing fully. Stomata from leaves produced in vitro wereparticularly insensitive to ABA which appears to be partly associatedwith the high cytokinin concentration in the culture medium.In the long-term, this stomatal insensitivity to ABA might contributeto plant losses when micropropagated plantlets are transferredto soil. Key words: Micropropagation, stomatal physiology, dehydration, PEG, ABA, BAP, darkness, CO2, Delphinium  相似文献   

5.
Intact plants of okra (Hibiscus esculentus) were chilled at6°C in the light, and leaf diffusion resistance (LDR) andleaf water potential measured. The response of the LDR of excisedleaves to fresh weight loss and, separately, exogenous abscisicacid (ABA) supply, was also studied at 6°C and 30°C.The influence of two pre-treatments upon these measurementswas studied. The two pre-treatments consisted of the impositionof a period of water stress at 30°C prior to measurement(followed by re-watering) or the spraying of the leaves withABA. It was found that plants that had been grown in a highhumidity environment continuously (designated control plants)had stomata that were very unresponsive to both water loss fromthe leaves and to exogenous ABA at both temperatures (6°Cand 30°C). Chilling the control plants resulted in rapidwilting and concomitant decline in leaf water potential. A pre-treatmentof water stress prior to chilling did not alter or reduce therate of development of chilling injury, nor did the pre-treatmentincrease the responsiveness of stomata at 6°C to water lossor exogenous ABA. However, spraying the leaves with ABA priorto chilling reduced the severity and delayed the onset of chillinginjury. Stomatal response to water stress and exogenous ABAwas increased by the spraying pre-treatment. These results arediscussed in relation to previous studies of the phenomenonof stomatal locking open at low temperature and the effect ofpre-treatments upon the development of chill-resistance. Key words: Water stress, chilling, stomata  相似文献   

6.
Stomata on upper leaves of drought-stressed pearl millet (Pennisetumamericanum [L.] Leeke) crops were more open in flowering (F)than in pre-flowering (PF) plants. This was not due to differencesin leaf water potential (). Stomata of PF plants closed when fell to about –1.7 MPa, while on F plants stomata closedonly when approached –2.3 MPa. Osmotic adjustment did not account for these differences asrelations between turgor potential (P) and were similar inF and PF plants. While stomata of PF plants closed as W becamezero, in F plants stomata remained open even after bulk leafturgor was lost. Differences between F and PF plants were not explained by differencesin age of leaves sampled. However, leaves of water-stressedPF plants had higher levels of abscisic acid (ABA) than leavesof F plants, despite similarities in water status. From theseresults and from relationships between gL and stage of panicledevelopment, it is concluded that the tendency of stomata toremain open despite water stress and loss of bulk leaf P isrelated to the presence of an emerged panicle. Hypotheses whichaccount for this effect are discussed. Key words: Pennisetum americanum [L.] Leeke, Pearl millet, Flowering, Stomata, Water stress, Abscisic acid  相似文献   

7.
In the sweet corn cultivar, Iochief, an episode of water deficitduring early tassel development results in a subsequent promotionof the growth of the lower axillary inflorescences. This responseis also produced by the application of abscisic acid (ABA) atthis period of growth to well-watered plants, and the hypothesisthat the response to water deficit was due to an increase inendogenous ABA concentration was examined. The ABA contentsof the tassel, leaf and axillary inflorescences were found toincrease during water stress, the increase in the tassel andaxillary buds being most rapid in the first 2 days of waterdeficit. This increase in free ABA content was followed after4 days of water deficit by a progressive increase in the concentrationof ‘bound’ ABA in the tissues. There was littleincrease in free ABA concentration after 4 days water deficit;this paralleled the subsequent growth response of the axillaryinflonscences which also was unaffected by prolonging the epidoseof water deficit beyond 4 days. In order to establish whether the response of the axillary inflorescencesto ABA was dependent upon the presence of the tassel, ABA wasapplied to watered plants with or without the developing tassel.As had been previously found with water stress, removing thetassel inhibited the response of the plant to applied ABA. Zea mays, apical dominance, water stress, inflorescence growth, abscisic acid  相似文献   

8.
Plants of Acacia and Eucalyptus species were grown under differentlevels of shading, nutrition, and irrigation to assess the effectof these factors on plant water use. Water use per unit of leaf(phyllode) area was affected only by the irrigation treatment,control plants that had received water daily using appreciablymore water than plants that had been repeatedly subjected towater stress. Water stress conditioning had little or no effecton plant height, leaf (phyllode) area, or minimum stomatal resistancein any of the species. Detailed study of the water stress conditioningof Eucalyptus robusta showed that controls used 46% more waterthan conditioned plants. Leaf area and plant height were unaffectedby conditioning. Control of transpiration was not due to stomatalfunctioning, both sets of plants operating with the same leafdiffusive resistance under conditions of ready water availability.Hydraulic conductivity of the intact root system was loweredby conditioning and it is suggested that this was due, at leastin part, to the effect that conditioning had on root xylem conductivity.Specific conductivity of stem sections was lowered by waterstress conditioning. Water stress avoidance was also associatedwith a more pronounced tendency for stomata to close prior towilting and with a higher level of leaf resistance which couldbe maintained at a low leaf water potential. Conditioned plantsexhibited drought tolerance in their ability to control lossof water from the leaf at lower leaf water potentials than thecontrols.  相似文献   

9.
White clover plants were subjected to either short-term developingwater stress or long-term stable levels of water deficit. Thehort-term stress reduced plant water status to about –2·0MPa over 16 d. The long-term stress was less severe, but wassustained for several weeks. Long-term water stress promotedthe production of inflorescences. However, water stress alsoincreased floret abortion and the premature death of whole flowerheads. The number of ovules per floret was decreased by waterstress. The most striking effect of both long- and short-term waterdeficit was to reduce pollen viability measured with the fluorochromaticassay. This was not an artefact of assay conditions. The pollenfrom water-stressed flower heads was not reversibly dehydrated;it did not score at similar viability to controls after incubationin conditions which hydrate pollen. In addition, the pollenfrom water-stressed plants lost viability more rapidly thanpollen from well-watered plants after removal from the flowerhead. The consequences of reduced pollen viability on seed set wereinvestigated by hand-crossing within and between groups of plantsmaintained for several weeks at three levels of water supply.Flower heads pollinated with pollen from water-stressed plantsset fewer seeds per floret than those pollinated with controlpollen. Key words: Trifolium repens, white clover, water stress, floral characters, seed set  相似文献   

10.
Epidermal strips from either well-watered or water-stressedplants of Commelina communis L. were subjected to a range ofABA concentrations (10–6–10–3 mol m–3)in the presence (330 parts 10–6 in air) or virtual absence(3 parts 10–6 in air) of CO2. The stomatal response toCO2 was greater in epidermis from water-stressed plants, althoughthere was a distinct CO2 response in epidermis from well-wateredplants. Additions of ABA via the incubation medium had littleeffect on the relative CO2 response. Stomata responded to ABAboth in the presence and virtual absence of CO2, but the relativeresponse to ABA was greatest in the high CO2 treatment. Whenwell-watered plants were sprayed with a 10–1 mol m–3ABA solution 1 d prior to use, the stomatal response of detachedepidermis to both CO2 and ABA was very similar to that of epidermisdetached from water-stressed leaves. It is hypothesized thata prolonged exposure to ABA is necessary before there is anymodification of the CO2 response of stomata.  相似文献   

11.
Young seedlings of two cultivars of Phaseolus vulgaris L. (cv.Cacahuate-72 and Michoacan-12A3) were subjected to a soil dryingtreatment. Stomata started to close before any leaf water deficitcould be detected. Soil drying promoted a small degree of ABAaccumulation in roots, but, at the time stomatal closure wasinitiated, at least in one cultivar, xylem ABA and bulk leafABA concentration were not enhanced. The mechanism of the stomatalresponse is discussed in terms of an as-yet unidentified regulatorof stomatal behaviour, redistribution of existing ABA in plants,and a high sensitivity of stomata to small changes in ABA concentration.  相似文献   

12.
Chlorophyll fluorescence imaging was used to measure stomatalclosure in response to desiccation of Tradescantia virginianaleaves grown under high (90%) and moderate (55%) relative humidities(RHs), or transferred between these humidities. Stomata in leavesgrown at high RH were less responsive to desiccation than thoseof leaves grown at moderate RH. Stomata of plants transferredfrom moderate RH conditions to high RH showed the same diminishedclosure in response to desiccation as did stomata that developedat high RH. This response was found both when the leaves werefully expanded and when still actively expanding during themoderate RH pre-treatment. Four days of exposure to high RHwas the minimal exposure time to induce the diminished closureresponse. When leaves were grown in high RH prior to a 10 dmoderate RH treatment, the reduced stomatal closure responseto desiccation was only reversed in leaves (regions) which wereactively expanding during moderate RH treatment. This indicatesthat with respect to stomatal responses to desiccation, highRH leaf regions have a limited capacity to adapt to moderateRH conditions. The decrease in responsiveness to desiccationof the stomata, induced by long-term exposure to high RH, wasnot due to osmotic adjustment in the leaves. Within 1 d aftertransferring moderate RH-grown plants to a high RH, the abscisicacid (ABA) concentration of their leaves decreased to the lowlevel of ABA found in high RH-grown leaves. The closure responsein leaves exposed to high RH for 5 d, however, could not befully restored by the application of ABA. Transferring plantsfrom high to moderate RH resulted in increased ABA levels within2 d without a recovery of the stomatal closing response. Itis discussed that the diminished stomatal closure in plantsexposed to high RH could be due to changes in the signallingpathway for ABA-related closure of stomata or to an increasedsequestration of ABA by mesophyll tissue or the symplast inthe epidermis, induced by a longer period (several days) ofa low ABA level. Key words: Abscisic acid, desiccation, PSII efficiency, relative water content, stomatal closure, vapour pressure deficit, water potential Received 8 October 2007; Revised 5 November 2007 Accepted 9 November 2007  相似文献   

13.
Crassulacean acid metabolism (CAM) was investigated in leaves and stems of the succulent C4 dicot Portulaca oleracea L. Diurnal acid fluctuations, CO2 gas exchange, and leaf resistance were monitored under various photoperiod and watering regimes. No CAM activity was seen in well watered plants grown under 16-hour days. Under 8-hour days, however, well watered plants showed a CAM-like pattern of acid fluctuation with amplitudes of 102 and 90 microequivalents per gram fresh weight for leaves and stems, respectively. Similar patterns were also observed in detached leaves and defoliated stems. Leaf resistance values indicated that stomata were open during part of the dark period, but night acidification most likely resulted from refixation of respiratory CO2. In water-stressed plants maximum acid accumulations were reduced under both long and short photoperiods. At night, these plants showed short periods of net CO2 uptake and stomatal opening which continued all night long during preliminary studies under natural environmental conditions. Greatest acid fluctuations, in P. oleracea, with amplitudes of 128 microequivalents per gram fresh weight, were observed in water-stressed plants which had been rewatered, especially when grown under short days. No net CO2 uptake took place, but stomata remained open throughout the night under these conditions. These results indicate that under certain conditions, such as water stress or short photoperiods, P. oleracea is capable of developing an acid metabolism with many similarities to CAM.  相似文献   

14.
Leaf resistances of 14 cultivated potato genotypes (Solanumspp) and three tuber-bearing wild Solanum species were comparedwhen plants were grown under water stress at two tropical sitesFactors investigated were diurnal changes in leaf resistance,the effect of plant age, transient drought versus well-wateredconditions of potted and field-grown plants These measurementswere carried out in order to determine the stomatal behaviourof tuber-bearing genotypes and species Significant genotypic differences in leaf resistances were notedwithin the cultivated genotypes All genotypes had higher resistanceswhen water-stressed, but LT-7 appeared to have the lowest leafresistances Genetic differences in stomatal behaviour of tuber-bearingSolanum species were confirmed Abaxial stomatal resistancesof water-stressed plants of the species ranged between 1 74and 13 8 s cm–1 Stomata of S chacoense were less affectedby drought (three-fold) than S tuberosum (four-fold) The greatesteffect was on S jungasense (five-fold) and on S raphanifoliumThese data show that stomata behaviour among tuber-bearing Solanumspecies is sufficiently different to warrant investigationsof drought-resistance in potato species under dry hot conditions Solanum tuberosum L., Solanum raphanifolium, Solanum chacoense, Solanum jungasense, leaf resistance  相似文献   

15.
Root to Shoot Communication in Maize Plants of the Effects of Soil Drying   总被引:46,自引:2,他引:44  
Seedlings of Zea mays L. (John Innes hybrid) were grown withroots divided between two containers such that part of the rootsystem could reduce the water potential of the soil in its immediatevicinity while the rest of the root system was well suppliedwith water. When compared to plants rooted in two pots of moistsoil, drying of part of the root system resulted in partialclosure of stomata, even though leaf water potential, turgorand abscisic acid (ABA) content remained unaffected. When leafpieces were removed from the two groups of plants and incubatedunder conditions favourable for stomatal opening, stomata ofthe ‘half-watered’ plants still showed restrictedapertures. Incubation in kinetin (10 mmol m–3) or zeatin(100 mmol m–3) reversed the closure of stomata stimulatedby soil drying. These results suggest that a continuous supplyof cytokinin from roots may be necessary to sustain maximalstomatal opening and an interruption of this supply due to soildrying may act as an indicator of inhibited root activity, resultingin restricted stomatal opening and thereby restricted wateruse. Key words: Zea mays L., Soil drying, Stomata, Roots  相似文献   

16.
Festuca arundinacea was grown in (a) calm, well watered conditions(b) calm, droughty conditions, and (c) windy, well watered conditions.Wind and drought both resulted in more and smaller stomata perarea of leaf, more epidermal appendages, and more marginal sclerenchyma.When leaves were loaded with weights, wind-grown material hada higher Young's modulus and returned more nearly to their originalposition when the weights were removed. The relationship betweenwater potential, , and per cent relative water content (RWC(%)),was determined using a pressure chamber technique: thesolute potential was much more negative in the drought and windtreatments, and in the drought treatment the pressure potentialreached zero at a higher RWC (%) than in the other treatments.Drought-grown plants had an enhanced ability to conserve water,whereas wind-grown plants had lost much of their ability torestrict water loss.  相似文献   

17.
Experiments were conducted to compare the effects of abscisicacid (ABA) and water stress treatments on leaf morphology andfloral development in a spring wheat. In one experiment injectionsof ABA or a control solution were given twice a week into thebase of the main stem for a period of 3 weeks. In a similarexperiment control plants were watered daily and treated plantswere subjected to water stress by watering only once a week.In both experiments the treated plants produced smaller leavesand fewer spikelets per ear. Analysis of epidermal morphologyusing polystyrene imprints of selected leaf blades from themain stem and a tiller of each plant showed that, compared withcontrol plants, both ABA and water stress decreased the meancell size, reduced the number of stomata per leaf, and increasedthe production of trichomes in all the leaves sampled. Datafor stomatal lengths and stomatal indices showed differencesbetween a main stem leaf and a tiller leaf which were consistentfor both experiments. It is concluded that ABA could mediatemany of the responses of wheat plants to prolonged water stress.The possible adaptive value of these responses is discussed.  相似文献   

18.
Shoot induction of ABA-requiring genes in response to soil drying   总被引:3,自引:0,他引:3  
Plant responses to water deficit are dynamic and varied, requiringco-ordination between the shoot and root. Among these responsesare alterations in gene expression. The expression of four genes,le4, le16, le20, and le25, which require increased ABA contentfor expression, was studied in tomato plants in which the rootsystems were divided between two large pots to impose waterdeficit gradually and to control signals from the root in responseto soil drying without inducing a signal from the shoot. Onegroup of plants had one-half of the roots watered, another grouphad both halves watered, and another group had neither halveswatered. In unwatered plants, the expression of le4 and le25correlated with ABA content, and that of le16 and le20 occurredbefore a detectable increase in leaf ABA content. The contrastingpatterns of expression indicate a difference in sensitivityof these genes to ABA or an additional signalling mechanism.Ample evidence indicates that shoot processes such as stomatalclosure are controlled by signals from the root. This studydemonstrates that genes may also be induced in the shoot bysignals from the root. Shoots of plants in which only half ofthe roots were watered showed no decrease in relative watercontent and no increase in ABA content; however, three of thefour genes, le4, le16, and le20, were induced. Root-to-shootcommunication plays a role in changes in gene expression andin alterations in physiological processes. Key words: Abscisic acid, water deficit, gene expression, split-root plants, long-distance signal  相似文献   

19.
Stomata of yellow lupin leaves are remarkably insensitive toabscisic acid (ABA). Stomatal resistance was monitored usingboth a viscous now porometer and a diffusion porometer. Resultswere confirmed with scanning electron microscopy. When exogenousABA solutions were supplied via petioles, 10–6 M solutionshad no effect on stomatal resistance. Upper (adaxial) stomatawere not affected by 10–5 M ABA but lower stomata showed3-fold more resistance after 2 h. Stomata of both surfaces closedafter 30 min in 10–4 M ABA. Isolated epidermal peels of lupin leaves were floated on ABAsolutions yet upper surface peels showed no stomatal closingin 10–4 M ABA, while lower surface stomata closed to abarely significant extent. Stomata of intact leaves were not very sensitive to darkness,showing at most a doubling in resistance after 6 h darkness.Complete stomatal closure, however, was readily produced bywilting leaves. Hence, lupin stomata are physically capableof closing. Endogenous ABA levels of water-stressed leaves increased approximately10-fold, which corresponds to concentrations below 10 µMABA. It is concluded that ABA is unlikely to play a role incontrolling short-term stomatal response of lupins.  相似文献   

20.
To evaluate whether abscisic acid (ABA) in the xylem sap playsan important role in controlling stomatal aperture of field-grownPrunus persica trees under drought conditions, stomatal conductance(g) and xylem ABA concentrations were monitored both in irrigatedand non-irrigated trees, on two consecutive summer days (threetimes a day). Stomata1 conductance of non-irrigated trees hada morning maximum and declined afterwards. The changes in gduring the day, rather than resulting from variations in theconcentrations of ABA in the xylem sap or the delivery rateof this compound to the leaves, were associated with changesin the relationship between g and xylem ABA. The stomata ofwater-stressed trees opened during the first hours of the day,despite the occurrence of a high concentration of ABA in thexylem sap. However, stomatal responsiveness to ABA in the xylemwas enhanced throughout the day. As a result, a tight inverserelationship between g and the logarithm of xylem ABA concentrationwas found both at midday and in the afternoon. A similar relationshipbetween g and ABA was found when exogenous ABA was fed to leavesdetached from well-watered trees. These results indicate thatABA derived from the xylem may account for the differences ing observed between field-grown peach trees growing with differentsoil water availabilities. Several possible explanations forthe apparent low stomatal sensitivity to xylem ABA in the morning,are discussed, such as high leaf water potential, low temperatureand high cytokinin activity. Key words: Prunus persica L., stomata, xylem ABA, water deficits, root-to-shoot communication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号