首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Among a total of 43 accessions ofAlstroemeria aurea, A. ligtu andA. magnifica nuclear DNA amounts (2C-values) showed significant intraspecific variation, 1.09, 1.21 and 1.15 fold, respectively, when determined through flow cytometric measurements of fluorescence of propidium iodide (PI) stained nuclei. After staining with another fluorochrome, 4,6-diamidino-2-phenylindole (DAPI), an intraspecific variation of 1.10, 1.11 and 1.12 fold, respectively, was found. C-band polymorphisms were present among and within the accessions of all three species. In some cases only very small differences in C-banding pattern were observed. In other cases, however, differences were more prominent. Besides C-band polymorphism, there were also instances of chromosome length polymorphism, which concerned the total chromosome complement or single chromosomes. The variation in nuclear DNA amount inA. aurea andA. ligtu was more or less continuous, except for one accession ofA. ligtu subsp.simsii. Artificial selection and possibly introgression of chromosomes from other species may have moulded the karyotypes of some of the accessions ofA. aurea, a species that has been under cultivation for more than 160 years. The variation as observed inA. magnifica subsp.magnifica was discontinuous and could be due to a broad species concept.  相似文献   

2.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

3.
The genera Grindelia Willd. and Haplopappus Cass. belong to the family Asteraceae - Astereae and are distributed in America and South America, respectively. Previous cytotaxonomic studies showed for South American species of Grindelia 2n=12 and for Haplopappus 2n=10 and 2n=12. Both Grindelia species (G. anethifolia, G. prunelloides), newly analyzed with molecular-cytological methods, exhibited symmetric karyotypes (AsI %=55.46 and 55.95) with metacentric chromosome sets (5m + 1m-sat) and 2n=12 chromosomes. The NOR was detected after fluorescence in situ hybridization (FISH) with 18/25S rDNA in the satellite chromosome 2. In contrast H. Happlopappus glutinosus, H. grindeloides and H. stolpii showed exclusively a higher asymmetric index (66.83%, 67.01% and 68.87%, respectively) with submetacentric chromosome sets (4sm + 1sm–sat). The sat-chromosomes 3 of H. glutinosus and H. grindelioides were both significantly different in their length from chromosomes 2 and 4. Furthermore in Grindelia the FISH with 5S rDNA could estimate signals in the short arms of chromosomes 3 or 4, that were not significantly differentiated in their length. Contrary to these findings in Grindelia, the position of 5S rDNA in Haplopappus was detected in the long arms of chromosome 1 (H. grindelioides and H. stolpii) and chromosome 2 (with two different loci) and chromosome 4 of H. glutinosus. The lengths of all measured chromosome arms with 5S rDNA were significantly different to those of the neighbours in the karyotypes. The two-color FISH of 5S and 18/25S rDNA had provided clear karyotypic markers for three (Haplopappus glutinosus) and two (H. grindelioides and H. stolpii) chromosomes. The number and position of rDNA signals were relatively highly conserved in the investigated five species without the double marked chromosome 2 of H. glutinosus, which shows an evolutionary dynamic of this 5S rRNA specific gene cluster. This investigation supports the assumption that the evolution of New World members of Grindelia and Haplopappus has not been accompanied by large karyotypic changes, but small chromosomal rearrangements have undoubtedly occurred (e.g. 5S rDNA localizations).  相似文献   

4.
Karyotypes of species sects. Linum and Adenolinum have been studied using C/DAPI-banding, Ag-NOR staining, FISH with 5S and 26S rDNA and RAPD analysis. C/DAPI-banding patterns enabled identification of all homologous chromosome pairs in the studied karyotypes. The revealed high similarity between species L. grandiflorum (2n = 16) and L. decumbens by chromosome and molecular markers proved their close genome relationship and identified the chromosome number in L. decumbens as 2n = 16. The similarity found for C/DAPI-banding patterns between species with the same chromosome numbers corresponds with the results obtained by RAPD-analysis, showing clusterization of 16-, 18- and 30-chromosome species into three separate groups. 5S rDNA and 26S rDNA were co-localized in NOR-chromosome 1 in the genomes of all species investigated. In 30-chromosome species, there were three separate 5S rDNA sites in chromosomes 3, 8 and 13. In 16-chromosome species, a separate 5S rDNA site was also located in chromosome 3, whereas in 18-chromosome species it was found in the long arm of NOR-chromosome 1. Thus, the difference in localization of rDNA sites in species with 2n = 16, 2n = 30 and 2n = 18 confirms taxonomists opinion, who attributed these species to different sects. Linum and Adenolinum, respectively. The obtained results suggest that species with 2n = 16, 2n = 18 and 2n = 30 originated from a 16-chromosome ancestor.  相似文献   

5.
The chromosomal locations of the 18S-5.8S-26S rDNA and 5S rDNA sequences were examined in four cytotypes of Ranunculus silerifolius (the Matsuyama, Mugi, Otaru, and Karatsu types) using fluorescence in situ hybridization (FISH). Using the 18S-5.8S-26S rDNA probe, one pair of probe hybridization sites was detected by FISH in the interstitial region corresponding to the secondary constriction on the short arm of a satellite chromosome (chromosome pair 6) in all four karyotypes. FISH using 5S rDNA identified one pair of sites. The 5S rDNA locus was on different chromosomes in the four karyotypes: in the interstitial region of the short arm of the largest metacentric chromosome (chromosome pair 1) in the Matsuyama type, in the interstitial region of the short arm of the subtelocentric chromosome (pair 2) in the Mugi and Otaru types, and in the interstitial region of the short arm of the metacentric chromosome (pair 2) in the Karatsu type. This physical mapping of the 5S rDNA provides valuable information about karyotype evolution in R. silerifolius. Possible mechanisms of chromosome evolution are discussed.  相似文献   

6.
Vanzela AL  Ruas CF  Oliveira MF  Ruas PM 《Genetica》2002,114(2):105-111
Comparative karyotype analyses of five diploid, two tetraploid, and three hexaploid species of Helianthuswere performed using Feulgen staining, Giemsa C and CMA3 (C-CMA) staining, and FISH with 45S rDNA probe. The karyotypes are composed by a basic number of x=17 with a predominance of meta- and submetacentric chromosome types. A polyploid series is associated with the basic number. Giemsa C- and C-CMA banding revealed terminal or interstitial heterochromatin according to the species, suggesting the existence of a mechanism that may be acting in the dispersion of heterochromatic segments in Helianthus. The nucleolar organizer regions were located at terminal chromosome positions by FISH with 45S rDNA probe. Diploid species presented four, six, and eight rDNA sites, tetraploid species showed eight sites and hexaploid species presented 12 rDNA sites. Karyomorphological differences include variation in number, size and chromosome morphology, suggesting that rearrangements involving small heterochromatic and rDNA segments played a major role in karyotype evolution.  相似文献   

7.
Several chromosome types have been recognized in Citrus and related genera by chromomycin A3 (CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata (“Barnes”, “Fawcett”, “Flying Dragon”, “Pomeroy”, “Rubidoux”, “USDA”) and one P. trifoliata × C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA+ banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus × Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. During the submission of this paper, we analyzed 25 other citrus cultivars with the same methodology and we found that the chromosome marker reported here can indeed distinguish Poncirus trifoliata from grapefruits, pummelos, and one variegated access of Citrus, besides the previously reported access of limes, limons, citrons, and sweet-oranges. However, among 14 mandarin cultivars, two of them displayed a single B/5S-45S chromosome, whereas in Citrus hystrix D.C., a far related species belonging to the Papeda subgenus, this chromosome type was found in homozygosis. Since these two mandarin cultivars are probably of hybrid origin, we assume that for almost all commercial cultivars and species of the subgenus Citrus this B type chromosome is a useful genetic marker.  相似文献   

8.
Karyotype and other chromosomal markers of Characidium cf. gomesi were analyzed using conventional (Giemsa-staining, Ag-NOR and C-banding) and molecular (Fluorescent in situ hybridization (FISH) with 18S and 5S rDNA biotinylated probes) techniques. Both sexes had invariably diploid chromosome number 2n = 50 while karyotypes of males and females differed. That of male consisted of 32 metacentric + 18 submetacentric chromosomes and that of female consisted 31 metacentric + 18 submetacentric + 1 subtelocentric chromosomes. The Z chromosome was medium-sized metacentric, while W was highly heterochromatinized subtelocentric element. NORs as revealed by Ag-staining were situated at 2–7 telomeric regions while FISH with 18S probes showed consistently 10 signals at telomeric regions. FISH with 5S rDNA probe showed constantly signals at one metacentric pair. Distribution of centromeric heterochromatin was mostly in all chromosome pairs, besides some telomeric sites. The common origin of the sex chromosome system of ZZ/ZW type in the karyotypes of other representatives of the genus analyzed so far might be hypothesized based on biogeography and partial phylogeny of the group.  相似文献   

9.
In the present study the chromosome distribution of the 5S rDNA loci and its relation to the major rDNA genes were investigated in three Coregonid species (Salmonidae): Coregonus lavaretus, Coregonus peled and Coregonus albula, a family which has experienced large karyotype rearrangements along its evolution starting from a tetraploid ancestor. 5S PRINS/CMA3 sequential staining together with previous data enabled us to locate 5S rRNA genes and nucleolar organizer regions (NORs) in the three species analyzed. PRINS revealed the 5S rDNA cluster at the distal part of the long arm of a similar submetacentric chromosome pair in the three species. Our data indicate that 5S rDNA clusters have probably conserved chromosomal location in the genus Coregonus, whereas 45S rDNA (NOR) sites are clearly differentiated, from a single locus in C. peled, to multiple loci in C. lavaretus and highly polymorphic multichromosomal location in C. albula.  相似文献   

10.
We describe the chromosomal location of GC-rich regions, 28S and 5S rDNA, core histone genes, and telomeric sequences in the veneroid bivalve species Venerupis aurea and Tapes (Venerupis) rhomboides, using fluorochrome staining with propidium iodide, DAPI and chromomycin A3 (CMA) and fluorescent in situ hybridization (FISH). DAPI dull/CMA bright bands were coincident with the chromosomal location of 28S rDNA in both species. The major rDNA was interstitially clustered at a single locus on the short arms of the metacentric chromosome pair 5 in V. aurea, whereas in T. rhomboides it was subtelomerically clustered on the long arms of the subtelocentric chromosome pair 17. 5S rDNA also was a single subtelomeric cluster on the long arms of subtelocentric pair 17 in V. aurea and on the short arms of the metacentric pair 9 in T. rhomboides. Furthermore, V. aurea showed four telomeric histone gene clusters on three metacentric pairs, at both ends of chromosome 2 and on the long arms of chromosomes 3 and 8, whereas histone genes in T. rhomboides clustered interstitially on the long arms of the metacentric pair 5 and proximally on the long arms of the subtelocentric pair 12. Double and triple FISH experiments demonstrated that rDNA and H3 histone genes localized on different chromosome pairs in the two clam species. Telomeric signals were found at both ends of every single chromosome in both species. Chromosomal location of these three gene families in two species of Veneridae provides a clue to karyotype evolution in this commercially important bivalve family.  相似文献   

11.
The phylogenetic relationships of the genus Sorghum and related genera were studied by sequencing the nuclear ribosomal DNA (rDNA) internal transcribed spacer region (ITS). DNA was extracted from 15 Sorghum accessions, including one accession from each of the sections Chaetosorghum and Heterosorghum, four accessions from Parasorghum, two accessions from Stiposorghum, and seven representatives from three species of the section Sorghum (one accession from each of S. propinquum and S. halepense, and five races of S. bicolor). The maize (Zea mays) line, H95, and an accession from Cleistachne sorghoides were also included in the study. Variable nucleotides were used to construct a strict consensus phylogenetic tree. The analyses indicate that S. propinquum, S. halepense and S. bicolor subsp. arundinaceum race aethiopicum may be the closest wild relatives of cultivated sorghum; Sorghum nitidum may be the closest 2n=10 relative to S. bicolor, the sections Chaetosorghum and Heterosorghum appear closely related to each other and more closely related to the section Sorghum than Parasorghum; and the section Parasorghum is not monophyletic. The results also indicate that the genus Sorghum is a very ancient and diverse group.This research was partially supported by a Third Country Scholarship from Pioneer Hi-Bred International Incorporated Contribution 94-182-J from Kansas Agricultural Experiment Station  相似文献   

12.
Abstract Molecular cytogenetics studies of A‐T‐rich regions, telomeres, and 5S and 45S rDNA sites on the chromosomes of Reichardia tingetana Roth (2n= 16; diploid) were done using 4′, 6‐diamidino‐2‐phenylindole (DAPI) and fluorescence in situ hybridization (FISH). The species were collected from three geographically isolated populations at Borg El Arab (salt marsh habitat), and Rashed and Shosha (sandy clay habitats) in Egypt. The three populations showed the chromosome number of all plants are diploid except for two tetraploid samples from Shosha. Plants from both Rashed and Shosha showed similarity in the distribution of six DAPI bands on six chromosomes, whereas those of Borg El Arab showed a distribution of 16 bands on 14 chromosomes. The FISH signals of the telomeres, and 5S and 45S rDNA, were at the telomeres of all chromosomes, two interstitial, and four terminal, respectively. The combination of DAPI and FISH showed colocalization of the DAPI bands with two 5S and two 45S rDNA loci. The increased number of DAPI bands in the cytotypes from the salt marsh habitat could indicate natural genetic adaptation through increasing the heterochromatin of A‐T‐rich regions.  相似文献   

13.
Two closely related spruces, Picea abies and Picea omorika, a Balkan paleoendemic species, often share habitats, yet never hybridize in nature. The present study adresses their characteristics such as nuclear DNA content, base composition, heterochromatin and rDNA pattern. The genome size of P. abies was 10% larger than that of P. omorika when assessed by flow cytometry, respectively 2C=37.2 pg and 33.8 pg; although when estimated as total chromosome length it was virtually the same. The heterochromatin Chromomycin-A (CMA)/ DAPI fluorochrome banding patterns of both P. abies and P. omorika are given here for the first time. Simultaneous FISH (fluorescent in situ hybridization) using 18S-26S and 5S rDNA probes revealed 16 18S rDNA sites in P. omorika, 12 18S rDNA sites in P. abies, and a single 5S rDNA locus in both species. The genomes have about 41% GC. The number and position of CMA/DAPI bands and rDNA loci provide good chromosome markers to clarify the karyotypes of the two species. Received: 18 October 2000 / 14 June 2001  相似文献   

14.
A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.  相似文献   

15.
Hatanaka T  Galetti PM 《Genetica》2004,122(3):239-244
A single NOR-bearing chromosome pair was identified by silver nitrate staining in a previous study of the fish Prochilodus argenteus from the S ã o Francisco River (MG, Brazil), with a third metacentric chromosome sporadically bearing active NOR. The present study focused on an analysis of the chromosomal localization of both the major (45S) and the minor (5S) rRNA genes using FISH. The use of the 18S rDNA probe confirmed the previous Ag-NOR sites interstitially located in a large metacentric pair and also identified up to three other sites located in the telomeric regions of distinct chromosomes, characterizing an interindividual variation of these sites. In addition, the 5S rDNA site was revealed adjacent to the major NOR site, identified at the end of the large Ag-NOR bearing metacentric chromosome. In a few metaphases, an additional weak hybridization signal was observed in a third chromosome, possibly indicating the presence of another 5S rDNA cluster. Despite a lower karyotype diversification (2n=54 and FN=108) often observed among species of Prochilodontidae, variations involving both 45S and 5S rRNA genes could play an important role in their chromosome diversification.  相似文献   

16.

Background and Aims

Brachypodium is a small genus of temperate grasses that comprises 12–15 species. Brachypodium distachyon is now well established as a model species for temperate cereals and forage grasses. In contrast to B. distachyon, other members of the genus have been poorly investigated at the chromosome level or not at all.

Methods

Twenty accessions comprising six species and two subspecies of Brachypodium were analysed cytogenetically. Measurements of nuclear genome size were made by flow cytometry. Chromosomal localization of 18–5·8–25S rDNA and 5S rDNA loci was performed by dual-colour fluorescence in situ hybridization (FISH) on enzymatically digested root-tip meristematic cells. For comparative phylogenetic analyses genomic in situ hybridization (GISH) applied to somatic chromosome preparations was used.

Key Results

All Brachypodium species examined have rather small genomes and chromosomes. Their chromosome numbers and genome sizes vary from 2n = 10 and 0·631 pg/2C in B. distachyon to 2n = 38 and 2·57 pg/2C in B. retusum, respectively. Genotypes with 18 and 28 chromosomes were found among B. pinnatum accessions. GISH analysis revealed that B. pinnatum with 28 chromosomes is most likely an interspecific hybrid between B. distachyon (2n = 10) and B. pinnatum (2n = 18). Two other species, B. phoenicoides and B. retusum, are also allopolyploids and B. distachyon or a close relative seems to be one of their putative ancestral species. In chromosomes of all species examined the 45S rDNA loci are distally distributed whereas loci for 5S rDNA are pericentromeric.

Conclusions

The increasing significance of B. distachyon as a model grass emphasizes the need to understand the evolutionary relationships in the genus Brachypodium and to ensure consistency in the biological nomenclature of its species. Modern molecular cytogenetic techniques such as FISH and GISH are suitable for comparative phylogenetic analyses and may provide informative chromosome- and/or genome-specific landmarks.  相似文献   

17.
We compare the chromosomal 28S and 5S rDNA patterns of the spined loach C. taenia (2n = 48) from an exclusively diploid population and from a diploid–polyploid population using 28S and 5S rDNA probe preparation and labelling, and fluorescence in situ hybridization (FISH). The 5S rDNA was located in two to three chromosome pairs, and separated from the 28S loci for the males and one female (F1) from the diploid population. Loaches from a diploid–polyploid population, and one female (F2) from the diploid population were characterized by at least one chromosome pair with 5S and 28S overlapping signals. The fishes differed mainly in their number of 28S rDNA loci, located on 3–6 chromosomes. All individuals from both populations were characterized by one acrocentric chromosome bearing a 28S rDNA signal on the telomeres of its long arm. The number of major ribosomal DNA in the karyotype of C. taenia by FISH was always higher than the number of Ag-NORs. Our data confirm the extensive polymorphism of NORs in both populations, as already has been observed in closely related Cobitis species, and less polymorphic 5S rDNA pattern. However, this preliminary result highlights the need for a wider scale study.  相似文献   

18.
Polypteridae is a family of archaic freshwater African fish that constitute an interesting subject for the study of the karyological evolution in vertebrates, on account of their primitive morphological characters and peculiar relationships with lower Osteichthyans. In this paper, a cytogenetic analysis on twenty specimens of both sexes of Polypterus ornatipinnis the ornate "bichir", coming from the Congo River basin, was performed by using both classical and molecular techniques. The karyotypic formula (2n=36; FN=72) was composed of 26 M+10 SM. The Alu I banding, performed to characterize heterochromatin in this species, was mainly centromeric. Both the chromosome location of the ribosomal 5S and 18S rRNA genes were examined by using Ag-NOR, classical C-banding, CMA(3) staining and FISH. CMA(3) marked all centromerical regions and showed the presence of two GC rich regions on the p arm of the chromosome pair n°1 and on the q arm of the pair n°14. Staining with Ag-NOR marked the only telomeric region of the chromosome n°1 p arm. After PCR, the 5S rDNA in this species was cloned, sequenced and analyzed. In the 665bp 5S rDNA sequence of P.ornatipinnis, a conserved 120bp gene region for the 5S rDNA was identified, followed by a non-transcribed variable spacer (NTS) which included simple repeats, microsatellites and a fragment of a non-LTR retrotransposon R-TEX. FISH with 5S rDNA marked the subtelomeric region of the q arm of the chromosome pair n°14, previously marked by CMA(3). FISH with 18S rDNA marked the telomeric region of the p arm of the pair n°1, previously marked both by Ag-NOR and CMA(3). The (GATA)(7) repeats marked the telomeric regions of all chromosome pairs, with the exclusion of the n°1, n°3 and n°14; hybridization with telomeric probes (TTAGGG)(n) showed signals at the end of all chromosomes. Karyotype evolution in Polypterus genus was finally discussed, including the new data obtained.  相似文献   

19.
权有娟  李想  袁飞敏  刘博  陈志国 《广西植物》2021,41(12):1988-1995
为精确地识别藜属植物染色体组的核型特征,该文研究了4种来自青海高原的野生藜属植物(灰绿藜、藜、菊叶香藜及杂配藜)和1种从美国引进的栽培藜麦品种PI614932-HX(3)基于染色体荧光原位杂交(rDNA FISH)的核型。利用5S rDNA和45S rDNA对5种藜属植物有丝分裂中期的染色体进行FISH研究。藜属植物的核型分析结果表明:(1)藜属植物中存在二倍体(2n=2x=18)和四倍体(2n=4x=36)两种倍性,藜麦和灰绿藜为四倍体,其余3种为二倍体。(2)藜麦、灰绿藜、藜、菊叶香藜及杂配藜的核型公式分别为2n=4x=36=34m(2AST)+2sm,2n=4x=36=32m(4AST)+4sm,2n=2x=18=16m(4AST)+2sm,2n=2x=18=18m及2n=2x=18=16m+2sm。(3)染色体由大部分的中部着丝粒染色体(m)和少部分近中部着丝粒染色体(sm)组成。(4)核型类型除了菊叶香藜为1B以外,其余均属于2B类型。(5)在藜麦、灰绿藜及藜中具有分布位置不同、数量不等的双随体。5S rDNA、45S rDNA FISH结果表明:(1)藜麦和灰绿藜的染色体上存在2对5S rDNA位点和1对45S rDNA位点,藜、杂配藜的染色体上存在1对5S rDNA位点和1对45S rDNA位点,菊叶香藜的染色体上只存在1对5S rDNA位点。(2)5S rDNA和45S rDNA位点均位于染色体的短臂上。该研究首次获得了藜属植物基于5S rDNA和45S rDNA荧光原位杂交核型,为藜属植物亲缘关系研究和细胞生物学研究提供了分子细胞遗传学依据。  相似文献   

20.
We have analyzed the phylogenetic and genomic relationships in the genus Setaria Beauv. including diploid and tetraploid species, by means of the molecular diversity of the 5S rDNA spacer and chromosomal organization of the 5S and 18S-5.8S-25S rDNA genes. PCR amplification of the 5S rDNA sequences gave specific patterns. All the species studied here share a common band of about 340 bp. An additional band of an approximately 300-bp repeat unit was found for Setaria verticillata and the Chinese accessions of Setaria italica and Setaria viridis. An additional band of 450 bp was found in the sole species Setaria faberii. Fluorescent in situ hybridization was used for physical mapping of the 5S and 18S-5.8S-25S rDNA genes and showed that they are localized at two separate loci with no polymorphism of chromosome location among species. Two chromosome pairs carrying the 5S and 18S-5.8S-25S rDNA clusters can now be unambiguously identified using FISH. Phylogenetic trees based on the variation of the amplified 5S rDNA sequences showed a clear separation into four groups. The clustering was dependent on the genomic composition (genome A versus genome B) and confirmed the closest relationship of S. italica and S. viridis accessions from the same geographical region. Our results confirm previous hypotheses on the domestication centers of S. italica. They also show the wide difference between the A and B genomes, and even clarify the taxonomic position of S. verticillata. Received: 28 August 2000 / Accepted: 27 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号