首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Early Ilerdian (Early Eocene, Shallow Benthic Zones 5 and 6) carbonate systems of the Pyrenees shelf were deposited after a time of severe climatic (‘Paleocene–Eocene Thermal Maximum, PETM’) and phylogenetic (‘Larger Foraminifer Turnover’) changes. They reflect the radiation of nummulitid, alveolinid, and orbitolitid larger foraminifera after remarkable biotic changes at the end of the Paleocene, and announce their subsequent flourishing in the Middle Eocene.A paleoenvironmental model for tropical carbonate environments of this particular time interval is provided herein. During the Early Ilerdian, the inner and middle ramp deposits from Minerve, Campo and Serraduy revealed the end-member of a tropical carbonate factory with carbonate production dominated by the end-members of biotically (photo-autotrophic skeletal) controlled and biotically induced carbonate precipitation. Inner platform environments are dominated by alveolinids and in part by orbitolitids, middle platform environments are dominated by nummulitids. Corals are present, but they do not form reefs, which is a typical feature for the Eocene. Nummulite shoal complexes, which are well-known from the Middle Eocene are also absent during the studied Early Ilerdian interval, which may reflect the early evolutionary stage of this group.  相似文献   

2.
3.
In the Galala Mountains of the Eastern Desert, Egypt, carbonate platform and basin deposits have excellent exposure. These exposures show a late Campanian–early Paleocene rimmed platform evolving into a late Paleocene distally steepened ramp. We modelled the evolution of the platform–basin transition from the Maastrichtian to Selandian (68.7–59 Ma) with the 2-D stratigraphic simulation program PHIL and compared the modelled results with outcrop sections. Stratigraphic, facies, and environmental data are summarized and operate as input and control parameters for the computer simulation. The most important parameters that control the depositional geometries of the late Cretaceous mixed carbonate siliciclastic platform and the Paleogene carbonate platform are changes in relative sea level, sediment flux and initial topography. The simulation provides an understanding of platform growth and slope to basin deposition, particularly in areas of the platform that are poorly exposed or have been eroded. Moreover, the simulated geologic parameters like lithology, overall thickness and palaeowater depth closely resemble field and laboratory measurements of the individual sections. In an earlier study, the Maastrichtian slope angle was calculated to be 5–8° and this was confirmed in this study. In this earlier study also the timing of the transition from a rimmed platform to a distally steepened ramp was established to be during latest Maastrichtian–early Paleocene. The present study shows that the rimmed platform persisted at least until the late Paleocene (59 Ma), as indicated by the relatively high slope angle of 6°.  相似文献   

4.
The Paleocene–Eocene Taleh Zang Formation of the Zagros Basin is a sequence of shallow-water carbonates. We have studied carbonate platform, sedimentary environments and its changes based on the facies analysis with particular emphasis on the biogenic assemblages of the Late Paleocene Sarkan and Early Eocene Maleh kuh sections. In the Late Paleocene, nine microfacies types were distinguished, dominated by algal taxa and corals at the lower part and larger foraminifera at the upper part. The Lower Eocene section is characterised by 10 microfacies types, which are dominated by diverse larger foraminifera such as alveolinids, orbitolitids and nummulitids. The Taleh Zang Formation at the Sarkan and Maleh kuh sections represents sedimentation on a carbonate ramp.

The deepening trends show a gradual increase in perforate foraminifera, the deepest environment is marked by the maximum occurrence of perforate foraminifers (Nummulites), while the shallowing trends are composed mainly of imperforate foraminifera and also characterised by lack of fossils in tidal flat facies.

Based on the facies changes and platform evolution, three stages are assumed in platform development: I; algal and coralgal colonies (coralgal platform), II; coralgal reefs giving way to larger foraminifera, III; dominance of diverse and newly developing larger foraminifera lineages in oligotrophic conditions.  相似文献   

5.
A paleoecological and sedimentological study was carried out on shallow-water carbonates of the Kras Plateau (SW Slovenia) with the goal of reconstructing paleoenvironmental conditions and evolution of foraminiferal communities on the northwestern Adriatic Carbonate Platform (AdCP) during the Late Paleocene–earliest Eocene. Three facies have been recognized and summarized in a carbonate ramp model. Within these facies, six foraminiferal assemblages, representing different ramp sub-environments, have been defined: during the Late Paleocene sedimentation took place in a protected innermost ramp with (1) smaller miliolids- and (2) small benthic foraminifera-dominated assemblages thriving on partly vegetated, soft substrates. In the Uppermost Paleocene, sedimentation primarily occurred along a mid ramp. The upper mid-ramp was sporadically influenced by storms/currents and occupied by (3) Assilina-dominated assemblage occurring on a soft sandy substrate. The deeper mid-ramp was characterized by (4) ‘bioconstructors’- and (5) orthophragminids-dominated assemblages, colonizing biotopes with substrates of different nature. During the earliest Eocene, deposition occurred in an inner-ramp setting with (6) alveolinids-nummulitids assemblage thriving on muddy and sandy substrate, partly covered or close to seagrass beds. The Late Paleocene–earliest Eocene environmental conditions, coupled with the long-term evolution of larger benthic foraminifera (LBF), seem to have favored this low-light dependent group as common sediment contributors. By comparing the evolution of the shallow-water biota from the Adriatic area with data from the Pyrenees and Egypt, a general latitudinal trend can be recognized. However, on a smaller geographical scale, local conditions are likely to have played a pivotal role in promoting the evolution of biota characterized by suites of unique features.  相似文献   

6.
7.
Markus Wilmsen  Emad Nagm 《Facies》2012,58(2):229-247
The Cenomanian–Turonian (Upper Cretaceous) Galala and Maghra el Hadida formations of the Southern Galala Plateau in Wadi Araba (northern Eastern Desert, Egypt) represent marine depositional systems developing in response to the early Late Cretaceous transgression at the southern margin of the Neotethyan Ocean in tropical paleolatitudes. A facies analysis (litho-, bio- and microfacies) of these successions shows the presence of 22 facies types (FTs, six are related to the Galala Formation, while the Maghra el Hadida Formation is represented by 16 FTs). The Galala Formation was deposited in a fully marine lagoonal environment developing in response to a latest Middle to early Late Cenomanian transgression. The rich suspension- and deposit-feeding macrobenthos of the Galala Formation indicate meso- to eutrophic (i.e., green water) conditions. The facies types of the uppermost Cenomanian–Turonian Maghra el Hadida Formation suggest deposition on a homoclinal carbonate ramp with sub-environments ranging from deep-subtidal basin to intertidal back-ramp. Major and rapid shifts in depositional environments, related to (relative) sea-level changes, occurred in the mid-Late Cenomanian, the Early–Middle Turonian boundary interval, the middle part of the Middle Turonian and the Middle–Late Turonian boundary interval.  相似文献   

8.
Coastal mixed carbonate-siliciclastic and carbonate deposits of Late Barremian to Early Aptian age from the Lusitanian Basin (Portugal) are compared with a deep-sea succession (ODP 641) off the coast of Portugal. The coastal deposits show an abrupt cessation of rudist-dominated carbonate deposition marked by an emersion horizon and followed by the deposition of orbitolinid-rich marls during the Early Aptian. The subsequent development of the carbonate platform during the Late Aptian is masked by a hiatus. For this time interval shallow-water debris deposits of the deep-sea succession ODP 641 indicate that carbonate production in shallow-water areas resume in the early Late Aptian. Carbon-isotope stratigraphy in combination with available biostratigraphic data is used for intrabasinal correlation and for the correlation of the Portuguese with shallow-water successions from Switzerland, France, Oman and the Pacific. The correlation reveals that during the Early Aptian similar changes in their sedimentary patterns occur at the beginning of a marked negative shift of carbon-isotope values associated with the global deposition of organic rich black shales in the deep sea (OAE 1a). In all compared sections rudist-dominated carbonate deposition is stopped and followed either by orbitolinid-rich deposits, the deposition of microbial carbonates or by the drowning of the carbonate platform. The comparison shows that the deterioration for carbonate platform growth conditions during the Early Aptian occurred essentially simultaneously at the various localities. During this episode the ocean waters were in a preconditioned state of acidification stressing biocalcifying organisms. Sea level change combined with local effects like elevated nutrient levels and higher temperatures, were probably determining the nature of sedimentary change in shallow-water environments during the carbonate crisis. In the sections studied in Portugal the high abundance of orbitolinids overlying rudist limestones indicates that increased nutrient input may have played an important local role among the factors that caused an overall deterioration for carbonate producers during the late Early Aptian.  相似文献   

9.
Summary Mesozoic and Paleogene clastic carbonates in deep-water successions outcropping in the Sicani mountains (central southern Sicily) represent debris-flow and turbidite deposits accumulated in slope/base-of-slope sectors of the Sicanian Basin, a Permian to Miocene deep-water sedimentary domain of Sicily. Reef-derived carbonates of late Triassic age are frequently found among the clastic elements of these deposits, in association with other shallow and deep-water Mesozoic carbonates. The provide us with new data on the stratigraphic setting of a platform paleomargin now buried beneath the Sicilian thrust and fold belt. This paleomargin bounded the wide middle and upper Triassic carbonate platform which is now known in the subsurface of the Southern Sicilian thrust and fold belt. This paleomargin bounded the wide middle and upper Triassic carbonate platform which is now known in the subsurface of the Southern Sicilian mainland and offshore in the Pelagian Platform, from the Malta escarpment to the Sciacca and Trapani areas through the Hyblean Plateau. The hinge zones between this platform domain and the Sicanian basin were particularly affected by the paleostresses related to the Mesozoic and Paleogene evolution of the Southwestern Tethys. The sedimentary successions of these areas recorded repeated episodes of progradation, aggradation, backstepping, uplift and erosion of the platform-basin system, under eustatic and tectonic forcing.  相似文献   

10.
Summary The Areif El Naqa domal anticline in northeastern Sinai is part of the ‘Syrian Arc’ which represents an intraplate orogen that has been formed since the late Cretaceous by inversion of an older half-gaben system as a consequence of the collision of the African and Eurasian plates. The here studied pre- and syn-deformational Upper Albian to Lower Eocene sedimentary succession in the anticline was formed under shallow marine to hemipelagic conditions resulting in predominantly carbonate lithologies with only subordinate siliciclastic intercalations. The depositional history at Areif El Naqa has been reconstructed in terms of sequence stratigraphy on the basis of detailed sedimentological, biostratigraphical, and paleoecological investigations of ten sections including comparisons with age-equivalent successions further north and south as well as published data. Following a late Triassic-early Cretaceous extensional period, tectonically rather quiet conditions prevailed during deposition of the Albian-Turonian successions. Inversion started around the Coniacian. Three main phases of uplift have been determined for the Areif El Naqa anticline on the basis of evidence from lateral facies and thickness changes, local development of pronounced hiatuses, and in comparison to the sequence stratigraphic development in the tectonically quiet region of central east Sinai. The first major compressional phase is interpreted to have taken place in Coniacian-early Santonian times. It is characterized by pronounced facies and thickness changes which were documented in an earlier study byBartov et al. (1980). Nevertheless, inter-regional sea level changes still controlled deposition at Areif El Naqa during this period. The second pulse of tectonic uplift is indicated for the late Campanian-early Maastrichtian. This is based on siliciclastic deposits which are interpreted as having been reworked from older siliciclastic rocks uplifted in the anticlinal core. The third compressional pulse is inferred to be of middle Paleocene to early Eocene age as evidenced by a major hiatus in sections on the northern anticlinal flank. The uplift history at Areif El Naqa has been compared with the tectonic development in other parts of the Syrian Arc and in general seems to reflect major movements which occurred throughout the anticlines of the fold belt.  相似文献   

11.
The study of 3430 ostracods collected in the Lomme, Hanonet and Trois-Fontaines formations (Late Eifelian/Early Givetian) in four sections of the Dinant Synclinorium (Ardenne) allowed the recognition of more than 75 taxa. Their study displays the progressive evolution from an external mixed siliciclastic-carbonate ramp to a carbonate platform around the Eifelian/Givetian boundary. Ostracods from the Lomme Fm are published here for the first time. The leperditicopid ostracods are probably indicative of brackish water environments during the deposition of the Trois-Fontaines Fm, and consequently point to wet and warm climatic conditions during Early Givetian times in the Dinant Synclinorium. Their absence in widespread lagoonal environments in the upper part of the Givetian may be on the contrary related to very arid climate conditions. That important climatic change is probably in relation with the Taghanic Biocrisis.  相似文献   

12.
Summary Reef facies, reef types and their biotic associations in the Maiella platform margin (central Italy) provide qualitative evidence for a significant reef decline across the Cretaceous/Tertiary (K/T) boundary, and indicate two phases of reef recovery during the Paleocene. Rudists dominated the reef community until the latest Cretaceous. A significant sea-level fall around the time of the K/T boundary is documented by a truncation surface associated with emersion. During sea-level highstands in the Danian to Early Thanetian and, more extensively, during the Late Thanetian, coral-algal patch-reefs grew along the platform margin and top. Already in the Danian to Early Thanetian, the reef communities were more diverse and the constructional types more evolved than previously known from this time. Differences between the Danian to Early Thanetian coral association, the Late Thanetian association, and Late Cretaceous coral faunas may have ecological or evolutionary causes. Repeated emergence produced a complex diagenetic history in the Danian to Lower Thanetian limestones. All Paleocene reefs were displaced by gravitative redeposition. Coral-algal reefs are less important in the Early to mid Eocene, when alveolinid foraminifera dominated on the Maiella shelf. Reefs on the Maiella platform diversified and attained large sizes in the Late Eocene to Early Oligocene, as known from other Mediterranean platforms. The external controls on the Late Cretaceous to Oligocene evolution and demise of reef communities that are most easily demonstrated with our data are sealevel fluctuations and climate change. We propose that the change in reef biota and reef types across the K/T boundary and during the Early Tertiary were important causes of the parallel changes in platform growth style.  相似文献   

13.
The carbonate microproblematicum Saccamminopsis is reinterpreted as a probable udoteacean algal gametophyte, and it is compared with different genera of problematical Udoteaceae or Dasycladaceae of the Mesozoic and Cenozoic. No parallel is possible with other Palaeozoic or Recent microfossils. Saccamminopsis is virtually confined to the western Tethyan carbonates (Japan excepted) during the late Visean V3b/c (especially during biozones Cf6γ2-Cf6δ). Comparable algal genera extend up to the Eocene, with several Lazarus effects, probably due to the weakness of the aragonitic calcification.  相似文献   

14.
Cretaceous shallow-marine carbonate rocks of SW Slovenia were deposited in the northern part of the Adriatic Carbonate Platform. A 560-m-thick continuous Upper Cenomanian to Santonian carbonate succession has been studied near Hru?ica Village in Matarsko Podolje. With regard to lithological, sedimentological, and stratigraphical characteristics, the succession has been divided into nine lithostratigraphic units, mainly reflecting regressive and transgressive intervals of larger scale. During the latest Cenomanian and Early Turonian, hemipelagic limestones were deposited on top of shallow-marine lagoon and peritidal Upper Cenomanian deposits indicating relative sea-level rise. Subsequently, the deeper marine depositional setting was gradually filled by clinoform bioclastic sand bodies overlain by peritidal and shallow-marine low-energy mainly lagoonal lithofacies. Similar lithofacies of predominately inner ramp/shelf depositional settings prevail over the upper part (i.e., Coniacian to Santonian) of the succession. In the area, the Upper Cetaceous carbonate rocks are separated from the overlying Lower Eocene (Upper Paleocene?) carbonate sequence by regional unconformity denoted by distinct paleokarstic features. On the Adriatic Carbonate Platform the deeper marine carbonate setting, developed at the Cenomanian/Turonian boundary, is usually correlated with OAE2 and related eustatic sea-level rise. Similarly, subsequent reestablished shallow-marine conditions are related to Late Turonian long- and short-term sea-level fall. However, we are suggesting that deeper marine deposits were deposited in a tectonically induced intraplatform basin formed simultaneously with the uplift of the northern and northeastern marginal parts of the Adriatic Carbonate Platform.  相似文献   

15.
Palynological analyses of two wells (Haema-1 and Kachi-1) located in two sub-basins of the Northern South Yellow Sea Basin have been carried out in order to establish a palynostratigraphic breakdown of the sedimentary succession and to determine environments of deposition. Seven assemblage zones and two assemblage subzones have been erected on the basis of frequency variations in, and occurrences of, biostratigraphically significant palynomorphs as follows: Classopollis-Ephedripites Assemblage Zone (AZ): Barremian-Albian; Alisporites-Aquilapollenites-Penetetrapites AZ, which is subdivided into an Alisporites-Rugubivesiculites Assemblage Subzone: Cenomanian-Lower Maastrichtian, and an Aquilapollenites-Penetetrapites Assemblage Subzone: Upper Maastrichtian; Momipites-Coryluspollenites AZ: Paleocene; Caryapollenites-Inaperturopollenites AZ: Lower-Middle Eocene; Quercoidites-Pinuspollenites AZ: Upper Eocene; Liquidambarpollenites-Fupingopollenites-Magnastriatites AZ: Lower-Middle Miocene; Graminidites-Persicarioipollis AZ: Pliocene. The depositional environments represented by the well sections are considered to have been generally fluvio-lacustrine, and the climate to have varied between semi-arid and wet, and subtropical and warm temperate, except during the Late Eocene and Pliocene when a cool-temperate climate prevailed. Six stages in the development of the sub-basins are recognised. These are: (1) initial stage of rift or pull-apart basin-formation during the Late Jurassic?-Cretaceous; (2) subsidence from the Paleocene to Middle Eocene; (3) alternation of uplift and subsidence in the Late Eocene; (4) synrift inversion and erosion through the Oligocene; (5) uplift during the Early Miocene; and (6) widespread subsidence from the Middle Miocene onwards apart from during the Early Pliocene when the region was subjected to uplift once more.  相似文献   

16.
Two domains of carbonate deposition characterized mid-Tertiary Jamaica. After latest Cretaceous to Paleocene orogeny, submergence of insular paleo-Jamaica accompanied the strike-slip or extensional faulting associated with the formation of the Cayman Trench to the north. Differential subsidence along a series of peripheral subsea escarpments (Duanvale-Wagwater escarpment) produced relief in excess of 2000 m by the Late Eocene. Shoalwater limestones covered the slowly subsiding Cornwall-Middlesex platform, thus ending the supply of clastics to deep-sea bottoms north and east of the escarpment where contemporaneous planktonic-foraminiferal pelagites accumulated. Middle Eocene to Middle Miocene carbonate rocks deposited in the deep-sea represent a distinctive lithogenetic unit termed the Montpelier Group.A preponderance of globigerinacean and radiolarian tests characterizes lower Montpelier microfossil assemblages. Dominant benthonic forms include Melonis pompilioides, Fontbotia wuellerstorfi and species of Stilostomella and Pleurostomella. Available faunal criteria including the assemblage composition, depth preferences of extant species and recurrent morphologic-ecologic patterns suggest abyssal (2000 m) paleo-depths at the site of accumulation on a sediment apron near the base of the Duanvale-Wagwater escarpment. Computed from inferred paleodepth and estimated sedimentary thickness, Middle Eocene to Lower Miocene subsidence totals 2800 m. Biostratigraphic and paleoecologic data do not support the prevalent concept of a regional unconformity within the Montpelier.In the Middle Miocene, regional uplift led to the emergence of the Cornwall-Middlesex platform and to pronounced shoaling of marginal sea bottoms. Here, hemipelagic sedimentation resumed during the later Middle Miocene after the carbonate veneer on the adjacent platform was sufficiently eroded so as to expose noncarbonate rocks. See NAPS document No. 02395 for 67 pages of faunal reference lists, maps of sample locations and tables of foraminiferal occurrences. Order from ASIS/NAPS, c/o Microfiche Publications, 305 East 46th St., New York, N.Y., U.S.A. 10017. Remit with order $9.05 for photocopies or $5.55 for microfiche. Make checks payable to Microfiche Publications.  相似文献   

17.
Ostracode faunas obtained from nine sections spanning the Paleocene-Early Eocene interval from a platform-basin transect in the Southern Galala Plateau area (Eastern Desert, Egypt) have been investigated. The study focuses on taxonomy and biostratigraphy of the ostracode assemblages across the P/E boundary, with supporting comments on paleoecology and paleobiogeography. The studied nine sections yielded 60 taxa belonging to 39 genera. Five species are new. The P/E transition is characterized by the appearance of new taxa rather than extinctions. During the Early and early Late Paleocene, the ostracode assemblages throughout the study area are largely similar, being dominated by middle-outer neritic taxa. In the late Late Paleocene and Early Eocene, changes in the paleobathymetry from deeper marine environments in the distal area in the south to shallower marine environments in the proximal area in the north become pronounced. Many of the recorded taxa have a wide geographic distribution throughout the Middle East and North Africa. Similarities with basins of West Africa are also found, reflecting faunal exchanges between this area and southern Tethys during the Paleocene and Early Eocene.  相似文献   

18.
A detailed facies study of Early Permian strata within NE Svalbard reveals a fundamental change of the depositional setting, from a restricted-marine, warm-water carbonate platform to an open-marine, temperate-water, mixed siliciclastic-carbonate ramp. The uppermost strata of the Gipshuken Formation (Templet and Sørfonna members; Sakmarian–early Artinskian?) consist of microbialites (algal mats), mudstones, bioclastic/peloidal limestones, carbonate breccias and Microcodium facies reflecting peritidal platform areas and supratidal sabkhas. A mixed heterozoan/reduced photozoan assemblage indicates temperate-water conditions within neighboring deeper, open-marine mid-platform areas, while warm-water conditions still prevailed within inner platform zones. In contrast, the lowermost strata of the overlying Kapp Starostin Formation (Vøringen Member; late Artinskian?–Kungurian) show a fully heterozoan biotic assemblage reflecting temperate water conditions within open-marine, storm-dominated, nearshore to transitional offshore areas of a mixed carbonate-siliciclastic ramp. The Vøringen Member comprises three facies associations, which form a shallowing-upward sequence subsequent to an initial transgression. The sediments reflect bryozoan bioherms in most distal areas, followed by stacked tempestites of sandy brachiopodal shell banks and Skolithos piperocks, grading into broad sand flats in most proximal areas of the inner ramp. The above environmental change is regarded as a regional event taken place across the entire shelf along the northern margin of Pangea and is attributed to paleoclimatic, paleoceanographic, as well as paleogeographic changes, possibly related to the overall northwards drift of the supercontinent. An abrupt increase in terrigenous input coinciding with this change is ascribed to the uplift of a new local source area, probably to the north or east of the investigation area.  相似文献   

19.
Following the end‐Permian biotic crisis which led to the near extinction of crinoids, this echinoderm class rebounded rapidly during the Mesozoic, resulting in forms with important morphological and behavioural novelties. However, quantitative patterns of crinoid diversity during the Mesozoic remain largely unexplored. Here, we report results of analyses of the evolutionary dynamics of post‐Palaeozoic crinoid genera spanning a time interval between 250 and 70 Myr. We show that crinoids reached their Mesozoic peak of genus‐level richness during the Late Jurassic. We also document a major reorganization of different ecological crinoid groups in the Mesozoic. More specifically, the diversity of sessile forms generally increased towards the mid‐Mesozoic but decreased significantly starting in the Cretaceous, whereas the number of motile crinoid genera increased linearly during the Mesozoic. The possible role of biotic and abiotic factors in crinoid evolution is discussed.  相似文献   

20.
New data from the Berchtesgaden Alps result in a reconstruction of the Mesozoic-Cenozoic geodynamic history of the Northern Calcareous Alps. The closure of the western part of the Neotethys Ocean started in the late Early Jurassic and is evidenced by the onset of thick clay-rich sediments in the outer shelf area (=Hallstatt realm). The Middle to early Late Jurassic contraction is documented by the migration of trench-like basins formed in front of a propagating thrust belt. Due to ophiolite obduction, these basins propagated from the outer shelf area, forming there the Bajocian to Oxfordian Hallstatt Mélange, to the Hauptdolomit/Dachstein platform area, where the Oxfordian Rofan and Tauglboden Mélanges were formed. The basins were separated by nappe fronts forming structural highs. This scenario mirrors syn-orogenic erosion and deposition in an evolving thrust belt. Active basin formation and nappe thrusting ended around the Oxfordian/Kimmeridgian boundary, which was followed by the onset of carbonate platforms on structural highs prograding towards the former basins in latest Oxfordian to Early Tithonian time. Underfilled basins remained between the platforms. Rapid deepening around the Early/Late Tithonian boundary was induced by extension due to mountain uplift and resulted in the reconfiguration of the platforms and basins related to normal and probably strike-slip faults. Erosion of the uplifted nappe stack including obducted ophiolites caused final drowning and demise of the platforms in the Berriasian. The remaining Early Cretaceous basins were filled up with molasse sediments including siliciclastics until Aptian. Around the Early/Late Cretaceous boundary again extension and strike-slip movements started, followed by Eocene thrusting and Miocene strike-slip movements with block rotations. These younger tectonic movements destroyed the Triassic to Early Cretaceous palaeogeography and arranged the modern block configuration. The described Jurassic to Early Cretaceous history corresponds with that of the Western Carpathians, the Dinarides, and the Albanides, where (1) age dating of the metamorphic soles prove late Early to Middle Jurassic inneroceanic thrusting followed by late Middle to early Late Jurassic ophiolite obduction, (2) Kimmeridgian to Tithonian shallow-water platforms formed on top of the obducted ophiolites, and (3) latest Jurassic to Early Cretaceous sediments show postorogenic character. Therefore, we correlate the Jurassic geodynamic evolution of the Northern Calcareous Alps with the closure of the western part of the Neotethys Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号