首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We developed models to predict the effect of water velocity on prey capture rates and on optimal foraging velocities of two sympatric juvenile salmonids, coho salmon and steelhead. Mean fish size was ~80 mm, the size of age I+ coho and steelhead during their second summer in Southeast Alaska streams, when size overlap suggests that competition might be strongest. We used experimentally determined prey capture probabilities to estimate the effect of water velocity on gross energy intake rates, and we modeled prey capture costs using experimental data for search and handling times and published models of swimming costs. We used the difference between gross energy intake and prey capture costs to predict velocities at which each species maximized net energy intake rate. Predicted prey capture rates for both species declined from ~75 to 30–40 prey/h with a velocity increase from 0.30 to 0.60 m·s−1. We found little difference between coho and steelhead in predicted optimum foraging velocities (0.29 m·s−1 for coho and 0.30 m·s−1 for steelhead). Although prey capture ability appears to be more important than are prey capture costs in determining optimum foraging velocities, capture costs may be important for models that predict fish growth. Because coho are assumed to pay a greater swimming cost due to a less hydrodynamic body form, we also modeled 10 and 25% increases in hydrodynamic drag to assess the effect of increased prey capture costs. This reduced optimum velocity by 0 and 0.01 m∙s−1, respectively. Habitat segregation among equal-sized coho and steelhead does not appear to be related to the effects of water velocity on their respective foraging abilities.  相似文献   

2.
Habitat use and foraging behavior of two benthic insectivorous gobies, Rhinogobius sp. CO (cobalt type) and Rhinogobius sp. DA (dark type), were examined in relation to their predation effects on local prey density in a small coastal stream in southwestern Shikoku, Japan. Correlations among the foraging range, frequency of foraging attempts and current velocity indicated that individuals using fast-current habitats had small foraging ranges and infrequently made foraging attempts while those in slow currents frequently foraged over large areas. The former and the latter were recognized as ambush and wandering foragers, respectively. Interspecific comparisons of habitat use, foraging behavior and prey preference suggested that Rhinogobius sp. CO selectively forage mobile prey by ambushing in fast currents, whereas Rhinogobius sp. DA randomly forage available prey by wandering in slow-current habitats. A cage experiment was conducted to assess prey immigration rate and the degree of predation effects on local prey density in relation to current velocity. The results of the experiment support, at least in part, our initial predictions: (1) prey immigration rates increase with current velocity and (2) the effects of fish predation on local prey density are reduced as current velocity increases. Overall results illustrated a link between the foraging modes of the stream gobies and their predation effects on local prey density: fish adopt ambush foraging in fast currents, where the decrease in prey density tends to be less, whereas fish actively forage over large areas in slow currents, where the decrease in prey is relatively large.  相似文献   

3.
We examined prey utilization and energy consumption by brown trout, Salmo trutta, in a cold tailwater (Little Red River, Arkansas, USA; LRR) having low biodiversity and low availability of fish as prey. Stomach content analysis and age estimation were performed on thirty brown trout (10 each of three size classes for a total of 710 trout) collected monthly from an upstream and downstream site over a 1-year period. Diet diversity was low at both sites, as 80% and 70% of all prey consumed by upstream and downstream brown trout, respectively, were isopods. Piscivory (<0.5% of individuals sampled) and consumption of terrestrial invertebrates were rare. There was no relation between diet diversity and trout age, and a very small ontogenetic shift in brown trout diet. Second, we investigated brown trout growth rates relative to prey consumption and temperature. Temperatures and availability of prey were less than required for maximal trout growth. However, prey availability limited trout growth directly, but sub-optimal temperatures probably buffered the effect of this reduced energy consumption by reducing metabolic energy expenditures. Brown trout growth was 54.8–57.0% of the maximum predicted by a bioenergetics model. Instantaneous growth rates for age 1 and adult brown trout were slightly higher for those downstream (0.195) versus those upstream (0.152). Although isopods are abundant within this tailwater to serve as a forage base, the displacement of native fish fauna and subsequent lack of establishment of cold-tolerant forage fish species due to the thermal regime of hypolimnetic release from Greers Ferry Reservoir probably serves as a major barrier to brown trout growth.  相似文献   

4.
Schatz GS  McCauley E 《Oecologia》2007,153(4):1021-1030
Mismatches in the elemental composition of herbivores and their resources can impact herbivore growth and reproduction. In aquatic systems, the ratio of elements, such as C, P, and N, is used to characterize the food quality of algal prey. For example, large increases in the C:P ratio of edible algae can decrease rates of growth and reproduction in Daphnia. Current theory emphasizes that Daphnia utilize only assimilation and respiration processes to maintain an optimal elemental composition, yet studies of terrestrial herbivores implicate behavioral processes in coping with local variation in food quality. We tested the ability of juvenile and adult Daphnia to locate regions of high-quality food within a spatial gradient of algal prey differing in C:P ratio, while holding food density constant over space. Both juveniles and adults demonstrated similar behavior by quickly locating (i.e., <10 min) the region of high food quality. Foraging paths were centred on regions of high food quality and these differed significantly from paths of individuals exposed to a homogeneous environment of both food density and food quality. Ingestion rate experiments on algal prey of differing stoichiometric ratio show that individuals can adjust their intake rate over fast behavioral time-scales, and we use these data to examine how individuals choose foraging locations when presented with a spatial gradient that trades off food quality and food quantity. Daphnia reared under low food quality conditions chose to forage in regions of high food quality even though they could attain the same C ingestion rate elsewhere along a spatial gradient. We argue that these aspects of foraging behavior by Daphnia have important implications for how these herbivores manage their elemental composition and our understanding of the dynamics of these herbivore–plant systems in lakes and ponds where spatial variation in food quality is present. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Many planktivorous fishes forage in currents, where they actively maintain position and visually strike at current-entrained zooplankton. In general, the zooplankton are wafted by the foraging fish at a rate equivalent to the current velocity. From a fish's viewpoint the plankton approach either head-on or offset at varied distances from the fish's position. We present a model that describes the relative motion of particles as they approach and pass a foraging fish at different offset distances, and the rate of change in apparent size as they close on a fish. In addition, a series of experiments of fish feeding on plankton in a flume at increasing current velocities revealed that two basic tactics are utilized. At low current velocities (<10-14 cm s m 1), the fish swims toward the prey, whereas at higher current velocities the fish tends to fall back with the current to capture a prey item. The model and experimental results are discussed in terms of the visual problems associated with the detection and tracking of items in motion.  相似文献   

6.
Movements of prey organisms across ecosystem boundaries often subsidize consumer populations in adjacent habitats. Human disturbances such as habitat degradation or non-native species invasions may alter the characteristics or fate of these prey subsidies, but few studies have measured the direct effects of this disruption on the growth and local abundance of predators in recipient habitats. Here we present evidence, obtained from a combined experimental and comparative study in northern Japan, that an invading stream fish usurped the flux of allochthonous prey to a native fish, consequently altering the diet and reducing the growth and abundance of the native species. A large-scale field experiment showed that excluding terrestrial invertebrates that fell into the stream with a mesh greenhouse reduced terrestrial prey in diets of native Dolly Varden charr (Salvelinus malma) by 46–70%, and reduced their growth by 25% over six weeks. However, when nonnative rainbow trout (Oncorhynchus mykiss) were introduced, they monopolized these prey and caused an even greater reduction of terrestrial prey in charr diets of 82–93%, and reduced charr growth by 31% over the same period. Adding both greenhouse and rainbow trout treatments together produced similar results to adding either alone. Results from a comparative field study of six other stream sites in the region corroborated the experimental findings, showing that at invaded sites rainbow trout usurped the terrestrial prey subsidy, causing a more than 75% decrease in the biomass of terrestrial invertebrates in Dolly Varden diets and forcing them to shift their foraging to insects on the stream bottom. Moreover, at sites with even low densities of rainbow trout, biomass of Dolly Varden was more than 75% lower than at sites without rainbow trout. Disruption of resource fluxes between habitats may be a common, but unidentified, consequence of invasions, and an additional mechanism contributing to the loss of native species Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Patch use in time and space for a meso-predator in a risky world   总被引:1,自引:0,他引:1  
Predator–prey studies often assume a three trophic level system where predators forage free from any risk of predation. Since meso-predators themselves are also prospective prey, they too need to trade-off between food and safety. We applied foraging theory to study patch use and habitat selection by a meso-predator, the red fox. We present evidence that foxes use a quitting harvest rate rule when deciding whether or not to abandon a foraging patch, and experience diminishing returns when foraging from a depletable food patch. Furthermore, our data suggest that patch use decisions of red foxes are influenced not just by the availability of food, but also by their perceived risk of predation. Fox behavior was affected by moonlight, with foxes depleting food resources more thoroughly (lower giving-up density) on darker nights compared to moonlit nights. Foxes reduced risk from hyenas by being more active where and when hyena activity was low. While hyenas were least active during moon, and most active during full moon nights, the reverse was true for foxes. Foxes showed twice as much activity during new moon compared to full moon nights, suggesting different costs of predation. Interestingly, resources in patches with cues of another predator (scat of wolf) were depleted to significantly lower levels compared to patches without. Our results emphasize the need for considering risk of predation for intermediate predators, and also shows how patch use theory and experimental food patches can be used for a predator. Taken together, these results may help us better understand trophic interactions.  相似文献   

8.
An optimal foraging model was used to predict prey selection based on both energy maximization and number maximization strategies. The influence of chemical cues and relative abundance on rainbow trout diet selection was examined under laboratory conditions.
In most fish, diet composition was strongly influenced by chemical cues. No fish followed an energy maximization strategy, and selection of prey based on taste persisted despite large caloric penalties associated with these choices. In the absence of chemical cues, diet composition was based on relative abundance of prey (a number maximization strategy). Within the feasible constraints of the optimal foraging model lie a large number of possible diet combinations which would provide sufficient energy for growth and reproduction. This provides a wide scope for feeding flexibility. Response to prey chemical cues may be the basis for observations of individual diet variability in trout.  相似文献   

9.
The foraging responses of 1–2-day-old naïve female Platygaster demades to odors of apple and pear foliage and host insect eggs were measured. The host origin of P. demades had no effect on the parasitoids’ longevity, host preference, or foraging behavior. Four distinct behaviors related to oviposition were identified. In choice experiments, more female parasitoids responded to apple foliage with no midge eggs than to midge eggs alone. In a Y-tube olfactometer, parasitoids preferred the plant cues to clean air, and responded equally to both apple and pear odors. The results indicate that P. demades utilizes plant cues to locate the habitat of its host and then searches for host eggs to parasitize.  相似文献   

10.
Winter habitat use and activity patterns of juvenile Atlantic salmon and brown trout were analysed in a comparative study between Passive Integrated Transponder (PIT) technology, radio telemetry and underwater observation by snorkelling. Two study periods were conducted in Stoney River, Newfoundland, Canada. During Study period I, 49 juvenile Atlantic salmon (fork length: 11.0–18.0 cm) and 7 brown trout (11.0–17.3 cm) were tagged with PIT tags and/or radio transmitters in late winter of 2004. During Study period II, 18 juvenile Atlantic salmon (fork length: 12.0–18.4 cm) and 23 brown trout (10.9–20.8 cm) were tagged and tracked twice a day at 10:00 h and 22:00 h on five consecutive days in late winter of 2005. From the 56 fish released during Study period I, on average 19.6 ± 6.0% of the PIT tagged fish and 99.3 ± 2.2% of the radio tagged fish were relocated during any given survey. Over the Study period II, 39% of fish emigrated from the study site. PIT technology had an efficiency of 39.2 ± 14.1% to detect the remaining fish. In contrast, radio telemetry relocated on average 96.9 ± 6.5% of the tagged fish whereas by snorkelling on average only 4.1 ± 5.6% of the tagged fish were observed. PIT telemetry may however be more efficient in smaller, less heterogeneous streams. The advantage of PIT technology over radio telemetry is clearly that it is relatively less costly permitting higher numbers of individuals to be tagged and there is no limit in the operational life of the transponder. In winter, juvenile salmonids preferred low flow velocity and no preferences were observed for any specific water depth over the range of available water depths. Fish selected preferentially boulder habitat over other substrates in the environment. Habitat utilisation did not differ between day and night. The use of winter preference indices may be important for future habitat modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号