首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
Our studies, which are aimed at understanding the catalytic mechanism of the beta subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to clarify the functional roles of several putative active site residues. Although previous chemical modification studies have suggested that histidine 86, arginine 148, and cysteine 230 are essential residues in the beta subunit, our present findings that beta subunits with single amino acid replacements at these positions have partial activity show that these 3 residues are not essential for catalysis or substrate binding. These conclusions are consistent with the recently determined three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Amino acid substitution of lysine 87, which forms a Schiff base with pyridoxal phosphate in the wild type beta subunit, yields an inactive form of the beta subunit which binds alpha subunit, pyridoxal phosphate, and L-serine. We also report a rapid and efficient method for purifying wild type and mutant forms of the alpha 2 beta 2 complex from S. typhimurium from an improved enzyme source. The enzyme, which is produced by a multicopy plasmid encoding the trpA and trpB genes of S. typhimurium expressed in Escherichia coli, is crystallized from crude extracts by the addition of 6% poly(ethylene glycol) 8000 and 5 mM spermine. This new method is also used in the accompanying paper to purify nine alpha 2 beta 2 complexes containing mutant forms of the alpha subunit.  相似文献   

2.
The origin of reaction and substrate specificity and the control of activity by protein-protein interaction are investigated using the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. We have compared some spectroscopic and kinetic properties of the wild type beta subunit and five mutant forms of the beta subunit that have altered catalytic properties. These mutant enzymes, which were engineered by site-directed mutagenesis, have single amino acid replacements in either the active site or in the wall of a tunnel that extends from the active site of the alpha subunit to the active site of the beta subunit in the alpha 2 beta 2 complex. We find that the mutant alpha 2 beta 2 complexes have altered reaction and substrate specificity in beta-elimination and beta-replacement reactions with L-serine and with beta-chloro-L-alanine. Moreover, the mutant enzymes, unlike the wild type alpha 2 beta 2 complex, undergo irreversible substrate-induced inactivation. The mechanism of inactivation appears to be analogous to that first demonstrated by Metzler's group for inhibition of two other pyridoxal phosphate enzymes. Alkaline treatment of the inactivated enzyme yields apoenzyme and a previously described pyridoxal phosphate derivative. We demonstrate for the first time that enzymatic activity can be recovered by addition of pyridoxal phosphate following alkaline treatment. We conclude that the wild type and mutant alpha 2 beta 2 complexes differ in the way they process the amino acrylate intermediate. We suggest that the wild type beta subunit undergoes a conformational change upon association with the alpha subunit that alters the reaction specificity and that the mutant beta subunits do not undergo the same conformational change upon subunit association.  相似文献   

3.
To understand how the alpha and beta 2 subunits of tryptophan synthase from Escherichia coli interact to form an alpha 2 beta 2 complex and undergo mutual activation, we have investigated alpha subunits with single amino acid replacements at conserved proline residues. Although the activities of alpha 2 beta 2 complexes that contain wild type alpha subunit or alpha subunits substituted at positions 28, 62, 96, and 207 are similar, the activities of alpha 2 beta 2 complexes that contain alpha subunits substituted at positions 57 and 132 are remarkably altered. Whereas the latter enzymes have greatly reduced activities in the individual half-reactions, they have considerably higher activities in the overall reaction. These remarkable activity results are explained by a decrease in the affinity of these mutant alpha subunits for the beta 2 subunit and by an increase in the affinity in the combined presence of ligands of both the alpha subunit and the beta 2 subunit. Isothermal calorimetric titrations of wild type beta 2 subunit with wild type alpha subunit and a mutant alpha subunit containing a substitution of glycine for proline at position 132 show that both the affinity and the exothermic association enthalpy are greatly reduced in the mutant alpha subunit although the stoichiometry of association is unchanged. The affinity of the mutant alpha subunit for the beta 2 subunits is greatly increased in the presence of an alpha subunit ligand, alpha-glycerol phosphate. We conclude that proline 132 plays a critical role in subunit interaction and in mutual subunit activation.  相似文献   

4.
We have obtained a complete set of 20 variants of the alpha subunit of tryptophan synthase of Escherichia coli at position 49 in order to extend our previous studies on the effects of single amino acid replacements at position 49 on structure and function. Thirteen mutant alpha subunits have been newly constructed by site-directed mutagenesis using oligonucleotides. Six mutants were available from previous studies. We find that the wild type and all of the mutant alpha subunits form alpha 2 beta 2 complexes with the beta 2 subunit of tryptophan synthase with similar association constants and similarly stimulate the activity of the beta 2 subunit in the synthesis of L-tryptophan from L-serine and indole. Thus none of the changes at position 49 produces a change in the conformation of the alpha subunit which significantly interferes with normal subunit interaction. However, the 19 mutant alpha 2 beta 2 complexes are completely devoid of activity in reactions normally catalyzed by the active site of the alpha subunit. This is the first time that these several activities have been measured with a series of highly purified alpha subunits altered by mutation at a single site. Our finding that the mutant in which glutamic acid 49 is substituted by aspartic acid is totally devoid of alpha activity is especially significant and is strong evidence that glutamic acid 49 is an essential catalytic base in the reaction catalyzed by the alpha subunit. This result is consistent with the results of previous genetic studies, with evolutionary comparisons using sequence analysis, and with recent results from x-ray crystallography of the alpha 2 beta 2 complex of tryptophan synthase from Salmonella typhimurium.  相似文献   

5.
The alpha(2)beta(2) tryptophan synthase complex is a model enzyme for understanding allosteric regulation. We report the functional and regulatory properties of the betaS178P mutant. Ser-178 is located at the end of helix 6 of the beta subunit, belonging to the domain involved in intersubunit signaling. The carbonyl group of betaSer-178 is hydrogen bonded to Gly-181 of loop 6 of the alpha subunit only when alpha subunit ligands are bound. An analysis by molecular modeling of the structural effects caused by the betaS178P mutation suggests that the hydrogen bond involving alphaGly-181 is disrupted as a result of localized structural perturbations. The ratio of alpha to beta subunit concentrations was calculated to be 0.7, as for the wild type, indicating the maintenance of a tight alpha-beta complex. Both the activity of the alpha subunit and the inhibitory effect of the alpha subunit ligands indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate were found to be the same for the mutant and wild type enzyme, whereas the beta subunit activity of the mutant exhibited a 2-fold decrease. In striking contrast to that observed for the wild type, the allosteric effectors indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate do not affect the beta activity. Accordingly, the distribution of l-serine intermediates at the beta-site, dominated by the alpha-aminoacrylate, is only slightly influenced by alpha subunit ligands. Binding of sodium ions is weaker in the mutant than in the wild type and leads to a limited increase of the amount of the external aldimine intermediate, even at high pH, whereas binding of cesium ions exhibits the same affinity and effects as in the wild type, leading to an increase of the alpha-aminoacrylate tautomer absorbing at 450 nm. Crystals of the betaS178P mutant were grown, and their functional and regulatory properties were investigated by polarized absorption microspectrophotometry. These findings indicate that (i) the reciprocal activation of the alpha and beta activity in the alpha2beta2 complex with respect to the isolated subunits results from interactions that involve residues different from betaSer-178 and (ii) betaSer-178 is a critical residue in ligand-triggered signals between alpha and beta active sites.  相似文献   

6.
Our studies, which are aimed at understanding the catalytic mechanism of the alpha subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to explore the functional roles of aspartic acid 60, tyrosine 175, and glycine 211. These residues are located close to the substrate binding site of the alpha subunit in the three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Our finding that replacement of aspartic acid 60 by asparagine, alanine, or tyrosine results in complete loss of activity in the reaction catalyzed by the alpha subunit supports a catalytic role for aspartic acid 60. Since the mutant form with glutamic acid at position 60 has partial activity, glutamic acid 60 may serve as an alternative catalytic base. The mutant form in which tyrosine 175 is replaced by phenylalanine has substantial activity; thus the phenolic hydroxyl of tyrosine 175 is not essential for catalysis or substrate binding. Yanofsky and colleagues have identified many missense mutant forms of the alpha subunit of tryptophan synthase from Escherichia coli. Two of these inactive mutant forms had either tyrosine 175 replaced by cysteine or glycine 211 replaced by glutamic acid. Surprisingly, a second-site revertant which contained both of these amino acid changes was partially active. These results indicated that the second mutation must compensate in some way for the first. We now extend the studies of the effects of specific amino acid replacements at positions 175 and 211 by two techniques: 1) characterization of several mutant forms of the alpha subunit from S. typhimurium prepared by site-directed mutagenesis and 2) computer graphics modeling of the substrate binding site of the alpha subunit using the x-ray coordinates of the wild type alpha 2 beta 2 complex from S. typhimurium. We conclude that the restoration of alpha subunit activity in the doubly altered second-site revertant results from restoration of the proper geometry of the substrate binding site.  相似文献   

7.
Glutamic acid 49 of the alpha subunit of tryptophan synthase from Escherichia coli is an essential residue since 19 mutant proteins substituted at position 49 were found previously to be inactive. Our present findings that five mutants of the alpha subunit, substituted with Asp, Lys, Ala, Phe, or Gly at position 49, bind a substrate analog normally are further evidence that glutamic acid 49 is a catalytic base. Ligands of the alpha subunit also have similar effects on site-site interactions between the beta subunit and the wild type or mutant alpha subunits. These effects include inhibition of the activity of the beta subunit, reduction of the dissociation constant for D-tryptophan, and increase of the equilibrium concentration of a quinonoid intermediate formed with L-tryptophan.  相似文献   

8.
A. J. Barczak  J. Zhao  K. D. Pruitt    R. L. Last 《Genetics》1995,140(1):303-313
A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation.  相似文献   

9.
To investigate the functional role of glutamic acid 350 in the active site of the beta subunit of tryptophan synthase from Salmonella typhimurium, we have replaced this residue by glutamine or alanine by use of site-directed mutagenesis. The mutant alpha 2 beta 2 complexes were expressed, purified, crystallized, and characterized by spectroscopic and kinetic studies with several substrates. We find large alterations in the substrate and reaction specificity of each mutant form of the alpha 2 beta 2 complex. Since the two mutant enzymes are virtually inactive in reactions with L-serine but are active in reactions with beta-chloro-L-alanine, glutamic acid 350 may facilitate the beta-elimination of the weak hydroxyl leaving group of L-serine. The mutant alpha 2 beta 2 complexes are more active than the wild type enzyme in the beta-elimination reaction with beta-chloro-L-alanine. These enzymes are irreversibly inactivated by beta-chloro-L-alanine, whereas the wild type enzyme is not. These altered properties may result from a change in the conformation of the active site, from a change in the orientation of the coenzyme relative to active site residues, or from a change in the solvent accessibility of the active site. The alteration in the active site may enhance the release of amino acrylate from the Schiff base intermediate by hydrolysis or by transamination.  相似文献   

10.
K K Niyogi  R L Last  G R Fink    B Keith 《The Plant cell》1993,5(9):1011-1027
Suppressors of the blue fluorescence phenotype of the Arabidopsis trp1-100 mutant can be used to identify mutations in genes involved in plant tryptophan biosynthesis. Two recessive suppressor mutations define a new gene, TRP4. The trp4 mutant and the trp1-100 mutant are morphologically normal and grow without tryptophan, whereas the trp4; trp1-100 double mutant requires tryptophan for growth. The trp4; trp1-100 double mutant does not segregate at expected frequencies in genetic crosses because of a female-specific defect in transmission of the double mutant genotype, suggesting a role for the tryptophan pathway in female gametophyte development. Genetic and biochemical evidence shows that trp4 mutants are defective in a gene encoding the beta subunit of anthranilate synthase (AS). Arabidopsis AS beta subunit genes were isolated by complementation of an Escherichia coli anthranilate synthase mutation. The trp4 mutation cosegregates with one of the genes, ASB1, located on chromosome 1. Sequence analysis of the ASB1 gene from trp4-1 and trp4-2 plants revealed different single base pair substitutions relative to the wild type. Anthranilate synthase alpha and beta subunit genes are regulated coordinately in response to bacterial pathogen infiltration.  相似文献   

11.
Arginine 179 of the alpha subunit of tryptophan synthase of Salmonella typhimurium was changed to leucine by site-directed mutagenesis. The mutant alpha subunit was expressed in S. typhimurium, purified and crystallized as the alpha 2 beta 2 complex, and characterized by kinetic studies under steady-state reaction conditions. The rate of cleavage of indole 3-glycerol phosphate (alpha reaction) is reduced by 60% in the mutant alpha 2 beta 2 complex, whereas the rate of L-tryptophan synthesis from indole and L-serine (beta reaction) is unchanged. Thus, arginine 179 is not obligatory for catalysis, for binding of indole 3-glycerol phosphate, or for interaction of the alpha and beta 2 subunits. However, changing arginine 179 to leucine does have striking effects on ligand-dependent properties of this multienzyme complex. Ligands of the alpha subunit (DL-alpha-glycerophosphate and indole 3-propanol phosphate) which strongly inhibit the beta reaction of the native alpha 2 beta 2 complex have a slight stimulatory effect on the beta reaction of the mutant alpha 2 beta 2 complex. Likewise, L-serine, a ligand of the beta subunit which produces a 5-fold reduction in the Km for the alpha ligand indole 3-glycerol phosphate in the native alpha 2 beta 2 complex, has no effect on the mutant alpha 2 beta 2 complex. These results suggest that arginine 179 of the alpha subunit plays a role in the reciprocal transmission of substrate-induced conformational changes which occur between native alpha and beta 2 subunits in the alpha 2 beta 2 complex.  相似文献   

12.
The trpB8 mutation of Escherichia coli tryptophan synthase is unique in that the cells bearing this lesion are not only capable of utilizing indole for growth, but they also accumulate indole, under conditions of tryptophan limitation. The lesion was shown by DNA sequencing to be a G to C transversion at nucleotide 5528 of the trp operon, resulting in a Gly to Arg switch at codon 281. Gly-281, within the trypsin-sensitive "hinge" region, is invariant among all known beta polypeptides. The catalytic activity of the mutant beta 2(B8) protein is dramatically stimulated by alpha subunit, both in vivo and in vitro. In the absence of alpha subunit, ammonium ion effectively stimulated the activity in an apparently cooperative manner. The pH optimum for the mutant subunit was 9.8, which is 2 units higher than that of wild type. In contrast to the wild-type subunit, beta(B8) partially aggregated within cells upon overexpression. At the optimal concentration of ammonium ions (2.25 M), the beta 2(B8) mutant enzyme displayed lower affinity than wild-type enzyme toward indole and L-serine, but the Vmax was almost unchanged. The physicochemical behavior of beta 2(B8) is supported by computer graphic modeling studies. An open versus closed model of conformational change within the beta 2 protein is proposed. A plausible role for the hinge region is discussed.  相似文献   

13.
Two point mutants of Chlamydomonas reinhardtii, previously found by recombination and complementation analysis to map in the chloroplast atpB gene encoding the beta subunit of the CF1/CF0 ATP synthase, are here shown to be missense alterations near the 5' end of that gene. One mutant (ac-u-c-2-9) has a change at amino acid position 47 of the beta subunit from leucine (CTA) to arginine (CGA). In the second mutant (ac-u-c-2-29), the codon AAA (lysine) is changed to AAC (asparagine) at position 154. Spontaneous revertants of each mutant were isolated that restore the original wild type base pair. Northern analysis of total RNA and in vivo pulse labeling followed by immunoprecipitation reveals that both mutant atpB genes are transcribed and translated normally. However, immunoblots show that the amount of beta subunit associated with mutant thylakoids is only approximately 3% of that seen in wild type and that the CF1 alpha and gamma subunits are missing entirely. The disruption of ATP synthase complex assembly in these mutants is much more severe than in Escherichia coli beta subunit gene point mutants, which retain significant amounts of alpha and beta subunits on their membranes (Noumi, T., Oka, N., Kanazawa, H., and Futai, M. (1986) J. Biol. Chem. 261, 7070-7075). These results support the hypothesis that there are differences in assembly of the ATP synthase between E. coli and chloroplasts. In particular they indicate that beta must be present for assembly of the alpha and gamma subunits of CF1 onto chloroplast membranes.  相似文献   

14.
To obtain high levels of expression of the free alpha and beta subunits of tryptophan synthase from Salmonella typhimurium, we have used two plasmids (pStrpA and pStrpB) that carry the genes encoding the alpha and beta subunits, respectively. The expression of each plasmid in Escherichia coli CB149 results in overproduction of each subunit. We also report new and efficient methods for purifying the individual alpha and beta subunits. Microcrystals of the beta subunit are obtained by addition of polyethylene glycol 8000 and spermine to crude bacterial extracts. This crystallization procedure is similar to methods used previously to grow crystals of the S. typhimurium tryptophan synthase alpha 2 beta 2 complex for X-ray crystallography and to purify this complex by crystallization from bacterial extracts. The results suggest that purification by crystallization may be useful for other overexpressed enzymes and multienzymes complexes. Purification of the alpha subunit utilizes ammonium sulfate fractionation, chromatography on diethylaminoethyl-Sephacel, and high-performance liquid chromatography on a Mono Q column. The purified alpha and beta subunits are more than 95% pure by the criterion of sodium dodecyl sulfate gel electrophoresis. The procedures developed can be applied to the expression and purification of mutant forms of the separate alpha and beta subunits. The purified alpha and beta subunits provide useful materials for studies of subunit association and for investigations of other properties of the separate subunits.  相似文献   

15.
The pyridoxal 5'-phosphate (PLP)-dependent tryptophan synthase is a alpha(2)beta(2) complex. The alpha-beta subunit interaction plays a critical role both in the reciprocal activation of the individual subunits and in the allosteric regulation. We have investigated whether mutations of alpha loop6 Gly(181) and beta helix6 Ser(178) affect intersubunit communication. The loss of the hydrogen bond between these residues, achieved by proline substitution, does not significantly influence the intersubunit catalytic activation, but completely abolishes ligand-induced intersubunit signaling. The comparison of the crystal structure of the wild type and beta Ser(178)Pro mutant, in the absence and presence of alpha-subunit ligands, indicates that the removal of the interaction between beta Ser(178) and alpha Gly(181) strongly affects the equilibrium between active (closed) and inactive (open) conformations of the alpha-active site, the latter being stabilized in both mutants.  相似文献   

16.
During evolution of fungi, the separate tryptophan synthetase alpha and beta polypeptides of bacteria appear to have been fused in the order alpha-beta rather than the beta-alpha order that would be predicted from the order of the corresponding structural genes in all bacteria. We have fused the tryptophan synthetase polypeptides of Escherichia coli in both orders, alpha-beta and beta-alpha, with and without a short connecting (con) sequence, to explore possible explanations for the domain arrangement in fungi. We find that proteins composed of any of the four fused polypeptides, beta-alpha, beta-con-alpha, alpha-beta, and alpha-con-beta, are highly active enzymatically. However, only the alpha-beta and alpha-con-beta proteins are as active as the wild type enzyme. All four fusion proteins appear to be less soluble in vivo than the wild type enzyme; this abnormal characteristic is minimal for the alpha-con-beta enzyme. The alpha and beta domains of the four fusion polypeptides were not appreciably more heat labile than the wild type polypeptides. Competition experiments with mutant tryptophan synthetase alpha protein, and the fusion proteins suggest that in each fusion protein the joined alpha and beta domains have a functional tunnel connecting their alpha and beta active sites. Three tryptophan synthetase beta'-alpha fusion proteins were examined in which the carboxyl-terminal segment of the wild type beta polypeptide was deleted and replaced by a shorter, unnatural sequence. The resulting deletion fusion proteins were enzymatically inactive and were found predominantly in the cell debris. Evaluation of our findings in relation to the three-dimensional structure of the tryptophan synthetase enzyme complex of Salmonella typhimurium (5) and the results of mutational analyses with E. coli suggest that tryptophan synthetase may have evolved via an alpha-beta rather than a beta-alpha fusion because in beta-alpha fusions the amino-terminal helix of the alpha chain cannot assume the conformation required for optimal enzymatic activity.  相似文献   

17.
We have used circular dichroism measurements to compare the thermal unfolding of the wild type tryptophan synthase alpha subunit from Salmonella typhimurium with that of seven mutant forms with single amino acid replacements at two active site residues. Glutamic acid 49 has been replaced by phenylalanine, glutamine, or aspartic acid. Aspartic acid 60 has been replaced by alanine, aspartic acid, asparagine, or tyrosine. Thermodynamic properties (delta G, delta H, delta S, and Tm) of the wild type and mutant forms have been determined experimentally by measuring the free energy of unfolding as a function of temperature. Increasing the pH from 7.0 to 8.8 decreases the tm of the wild type alpha subunit from 56 to 45 degrees C. The thermal unfolding of the wild type alpha subunit and of six of the seven mutant forms can be described as reversible, two-state transitions. In contrast, the melting curve of a mutant alpha subunit in which aspartic acid 60 is replaced by tyrosine indicates the presence of a folding intermediate which may correspond to a "molten globule." Correlations between our observations and previous folding studies and the X-ray crystallographic structure are presented. Substitution of glutamic acid 49, which is located in the hydrophobic "pit" of an eight-fold alpha/beta barrel, by a hydrophobic phenylalanine residue increases the tm from 56 to 60 degrees C. In contrast, replacement of aspartic acid 60, which is accessible to solvent, results in small reductions in the thermal stability.  相似文献   

18.
The circular dichroism has been used to evaluate the effect of mutation on the environment of the pyridoxal phosphate coenzyme in the active site of the beta-subunit in the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. Seven mutant forms of the alpha 2 beta 2-complex with single amino acid replacements at residues 87, 109, 188, 306, and 350 of the beta-subunit have been prepared by site-directed mutagenesis, purified to homogeneity, and characterized by absorption and circular dichroism spectroscopy. Since the wild type and mutant alpha 2 beta 2 complexes all exhibit positive circular dichroism in the coenzyme absorption band, pyridoxal phosphate must bind asymmetrically in the active site of these enzymes. However, the coenzyme may have an altered orientation or active site environment in five of the mutant enzymes that display less intense ellipticity bands. The mutant enzyme in which lysine 87 is replaced by threonine has very weak ellipticity at 400 nm. Since lysine 87 forms a Schiff base with pyridoxal phosphate in the wild type enzyme, our results demonstrate the importance of the Schiff base linkage for rigid or asymmetric binding. Although the mutant enzymes display spectra in the presence of L-serine that differ from that of the wild type enzyme, addition of alpha-glycerol 3-phosphate converts the spectra of two of the mutant enzymes to that of the wild type enzyme. We conclude that this alpha-subunit ligand may produce a conformational change in the alpha-subunit that is transmitted to the mutant beta-subunits and partially corrects conformational alterations in the mutant enzymes.  相似文献   

19.
H Wiesinger  H J Hinz 《Biochemistry》1984,23(21):4928-4934
The binding of indole and L-serine to the isolated alpha and beta 2 subunits and the native alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli was investigated by direct microcalorimetry to reveal the energetic adaptation of ligand binding to the subunit structure of a multienzyme complex. In contrast to the general finding that negative heat capacity changes are associated with ligand binding to proteins, complex formation of indole and the alpha subunit involves a small positive change in heat capacity. This unusual result was considered as being indicative of a loosening of the protein structure. Such an interpretation is in good agreement with results of chemical accessibility studies (Freedberg & Hardman, 1971). Whereas the thermodynamic parameters of indole binding are not influenced by the subunit interaction, the large negative change in heat capacity of -6.5 kJ/(K X mol of beta 2) measured for the binding of L-serine to the isolated beta 2 subunit disappears completely when serine interacts with the tetrameric complex. These data demonstrate that the energy transduction pattern and therefore the functional roles of the substrates indole and L-serine vary strongly with the subunit structure of tryptophan synthase.  相似文献   

20.
The three-dimensional structure of the bifunctional tryptophan synthase alpha(2)beta(2) complex from Pyrococcus furiosus was determined by crystallographic analysis. This crystal structure, with the structures of an alpha subunit monomer and a beta(2) subunit dimer that have already been reported, is the first structural set in which changes in structure that occur upon the association of the individual tryptophan synthase subunits were observed. To elucidate the structural basis of the stimulation of the enzymatic activity of each of the alpha and beta(2) subunits upon alpha(2)beta(2) complex formation, the conformational changes due to complex formation were analyzed in detail compared with the structures of the alpha monomer and beta(2) subunit dimer. The major conformational changes due to complex formation occurred in the region correlated with the catalytic function of the enzyme as follows. (1) Structural changes in the beta subunit were greater than those in the alpha subunit. (2) Large movements of A46 and L165 in the alpha subunit due to complex formation caused a more open conformation favoring the entry of the substrate at the alpha active site. (3) The major changes in the beta subunit were the broadening of a long tunnel through which the alpha subunit product (indole) is transferred to the beta active site and the opening of an entrance at the beta active site. (4) The changes in the conformations of both the alpha and beta subunits due to complex formation contributed to the stabilization of the subunit association, which is critical for the stimulation of the enzymatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号