首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have evaluated the effect of mammalian codon optimization on the immunogenicity and protective efficacy of plasmid DNA vaccines encoding pre-erythrocytic stage Plasmodium falciparum and Plasmodium yoelii antigens in mice. Codon optimization significantly enhanced in vitro expression and in vivo antibody responses for P. falciparum circumsporozoite protein (PfCSP) and P. yoelii hepatocyte erythrocyte protein 17 kDa (PyHEP17) but not for P. yoelii circumsporozoite protein (PyCSP). Unexpectedly, more robust CD4+ and CD8+ T cell responses as measured by IFN-γ ELIspot, lymphoproliferation, and cytotoxic T lymphocyte assays were noted with native as compared with codon optimization constructs. Codon optimization also failed to enhance CD8+ T cell dependent protection against P. yoelii sporozoite challenge as measured by liver-stage parasite burden. These data demonstrate that the effect of mammalian codon optimization is antigen-dependent and may not be beneficial for vaccines designed to induce T cell dependent protective immunity in this malaria model.  相似文献   

2.

Background

Research aimed at developing vaccines against infectious diseases generally seeks to induce robust immune responses to immunodominant antigens. This approach has led to a number of efficient bacterial and viral vaccines, but it has yet to do so for parasitic pathogens. For malaria, a disease of global importance due to infection by Plasmodium protozoa, immunization with radiation-attenuated sporozoites uniquely leads to long lasting sterile immunity against infection. The circumsporozoite protein (CSP), an important component of the sporozoite''s surface, remains the leading candidate antigen for vaccines targeting the parasite''s pre-erythrocytic stages. Difficulties in developing CSP-based vaccines that reproduce the levels of protection afforded by radiation-attenuated sporozoites have led us to question the role of CSP in the acquisition of sterile immunity. We have used a parasite transgenic for the CSP because it allowed us to test whether a major immunodominant Plasmodium antigen is indeed needed for the induction of sterile protective immunity against infection.

Methodology/Main Findings

We employed a P. berghei parasite line that expresses a heterologous CSP from P. falciparum in order to assess the role of the CSP in the protection conferred by vaccination with radiation-attenuated P. berghei parasites. Our data demonstrated that sterile immunity could be obtained despite the absence of immune responses specific to the CSP expressed by the parasite used for challenge.

Conclusions

We conclude that other pre-erythrocytic parasite antigens, possibly hitherto uncharacterised, can be targeted to induce sterile immunity against malaria. From a broader perspective, our results raise the question as to whether immunodominant parasite antigens should be the favoured targets for vaccine development.  相似文献   

3.

Background

Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection.

Methodology/Principal Findings

We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans.

Conclusions/Significance

We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines.  相似文献   

4.
Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4+ T cells specific for the circumsporozoite protein (CSP). Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4+ T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4+ T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI) 24%–41%) of infections. The addition of RTS,S-induced CSP-specific CD4+ T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%–48%). This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%–97.8%) reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite) are responsible for breakthrough blood-stage infections.  相似文献   

5.
There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB) for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP) and native PfCSP from Oocysts (Pf Oocyst) developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5–20 pg; R2 = 0.9505). We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1–4, R2 = 0.9795) and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5–3 pg) of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV) for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes and transmission-blocking interventions in endemic areas.  相似文献   

6.

Background

Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1.

Methodology/Findings

We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies.

Conclusions/Significance

Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1.  相似文献   

7.
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite''s surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.  相似文献   

8.

Introduction

There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated.

Methods

This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured.

Results

On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients.

Conclusion

In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.  相似文献   

9.

Background

Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial.

Methods

Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes.

Results

During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes.

Conclusion

PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum.

Trial Registration

ClinicalTrials.gov NCT00666380  相似文献   

10.

Background

Two current leading malaria blood-stage vaccine candidate antigens for Plasmodium falciparum, the C-terminal region of merozoite surface protein 1 (MSP119) and apical membrane antigen 1 (AMA1), have been prioritized because of outstanding protective efficacies achieved in a rodent malaria Plasmodium yoelii model. However, P. falciparum vaccines based on these antigens have had disappointing outcomes in clinical trials. Discrepancies in the vaccine efficacies observed between the P. yoelii model and human clinical trials still remain problematic.

Methodology and Results

In this study, we assessed the protective efficacies of a series of MSP119- and AMA1-based vaccines using the P. berghei rodent malarial parasite and its transgenic models. Immunization of mice with a baculoviral-based vaccine (BBV) expressing P. falciparum MSP119 induced high titers of PfMSP119-specific antibodies that strongly reacted with P. falciparum blood-stage parasites. However, no protection was achieved following lethal challenge with transgenic P. berghei expressing PfMSP119 in place of native PbMSP119. Similarly, neither P. berghei MSP119- nor AMA1-BBV was effective against P. berghei. In contrast, immunization with P. yoelii MSP119- and AMA1-BBVs provided 100% and 40% protection, respectively, against P. yoelii lethal challenge. Mice that naturally acquired sterile immunity against P. berghei became cross-resistant to P. yoelii, but not vice versa.

Conclusion

This is the first study to address blood-stage vaccine efficacies using both P. berghei and P. yoelii models at the same time. P. berghei completely circumvents immune responses induced by MSP119- and AMA1-based vaccines, suggesting that P. berghei possesses additional molecules and/or mechanisms that circumvent the host''s immune responses to MSP119 and AMA1, which are lacking in P. yoelii. Although it is not known whether P. falciparum shares these escape mechanisms with P. berghei, P. berghei and its transgenic models may have potential as useful tools for identifying and evaluating new blood-stage vaccine candidate antigens for P. falciparum.  相似文献   

11.
The circumsporozoite protein (CSP) is the major surface protein of the sporozoite stage of malaria parasites and has multiple functions as the parasite develops and then migrates from the mosquito midgut to the mammalian liver. The overall structure of CSP is conserved among Plasmodium species, consisting of a species-specific central tandem repeat region flanked by two conserved domains: the NH2-terminus and the thrombospondin repeat (TSR) at the COOH-terminus. Although the central repeat region is an immunodominant B-cell epitope and the basis of the only candidate malaria vaccine in Phase III clinical trials, little is known about its functional role(s). We used the rodent malaria model Plasmodium berghei to investigate the role of the CSP tandem repeat region during sporozoite development. Here we describe two mutant parasite lines, one lacking the tandem repeat region (ΔRep) and the other lacking the NH2-terminus as well as the repeat region (ΔNΔRep). We show that in both mutant lines oocyst formation is unaffected but sporozoite development is defective.  相似文献   

12.
DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain. The three domains confer distinct activities to DDI1 proteins. The presence of a RVP domain makes DDI1 a potential target of HIV protease inhibitors, which also block the development of malaria parasites. Hence, we investigated the DDI1 of malaria parasites to identify its roles during parasite development and potential as a therapeutic target. DDI1 proteins of Plasmodium and other apicomplexan parasites share the UBL-RVP domain architecture, and some also contain the UBA domain. Plasmodium DDI1 is expressed across all the major life cycle stages and is important for parasite survival, as conditional depletion of DDI1 protein in the mouse malaria parasite Plasmodium berghei and the human malaria parasite Plasmodium falciparum compromised parasite development. Infection of mice with DDI1 knock-down P. berghei was self-limiting and protected the recovered mice from subsequent infection with homologous as well as heterologous parasites, indicating the potential of DDI1 knock-down parasites as a whole organism vaccine. Plasmodium falciparum DDI1 (PfDDI1) is associated with chromatin and DNA-protein crosslinks. PfDDI1-depleted parasites accumulated DNA-protein crosslinks and showed enhanced susceptibility to DNA-damaging chemicals, indicating a role of PfDDI1 in removal of DNA-protein crosslinks. Knock-down of PfDDI1 increased susceptibility to the retroviral protease inhibitor lopinavir and antimalarial artemisinin, which suggests that simultaneous inhibition of DDI1 could potentiate antimalarial activity of these drugs. As DDI1 knock-down parasites confer protective immunity and it could be a target of HIV protease inhibitors, Plasmodium DDI1 is a potential therapeutic target for malaria control.  相似文献   

13.
Malaria vaccines, comprised of irradiated Plasmodium falciparum sporozoites or a synthetic peptide containing T and B cell epitopes of the circumsporozoite protein (CSP), elicit multifunctional cytotoxic and non-cytotoxic CD4+ T cells in immunised volunteers. Both lytic and non-lytic CD4+T cell clones recognised a series of overlapping epitopes within a ‘universal’ T cell epitope EYLNKIQNSLSTEWSPCSVT of CSP (NF54 isolate) that was presented in the context of multiple DR molecules. Lytic activity directly correlated with T cell receptor (TCR) functional avidity as measured by stimulation indices and recognition of naturally occurring variant peptides. CD4+ T cell-mediated cytotoxicity was contact-dependent and did not require de novo synthesis of cytotoxic mediators, suggesting a granule-mediated mechanism. Live cell imaging of the interaction of effector and target cells demonstrated that CD4+ cytotoxic T cells recognise target cells with their leading edge, reorient their cytotoxic granules towards the zone of contact, and form a stable immunological synapse. CTL attacks induced chromatin condensation, nuclear fragmentation and formation of apoptotic bodies in target cells. Together, these findings suggest that CD4+ CTLs trigger target cell apoptosis via classical perforin/granzyme-mediated cytotoxicity, similar to CD8+ CTLs, and these multifunctional sporozoite- and peptide-induced CD4+ T cells have the potential to play a direct role as effector cells in targeting the exoerythrocytic forms within the liver.  相似文献   

14.
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.  相似文献   

15.

Background

Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs.

Methodology/Principal Findings

To define the substrate specificity of recombinant forms of these two malaria aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria.

Conclusions/Significance

This data showed that PfM1AAP and PfM17LAP are responsible for majority of the aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to specifically target these for anti-malaria treatment.  相似文献   

16.

Background

Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010.

Methods

Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data (PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface.

Results

We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas.

Conclusion

While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline and ultimately improve their evidence-based malaria control strategies.  相似文献   

17.
The development of an efficacious vaccine against the Plasmodium parasite remains a top priority. Previous research has demonstrated the ability of a prime-boost virally vectored sub-unit vaccination regimen, delivering the liver-stage expressed malaria antigen TRAP, to produce high levels of antigen-specific T cells. The liver-stage of malaria is the main target of T cell-mediated immunity, yet a major challenge in assessing new T cell inducing vaccines has been the lack of a suitable pre-clinical assay. We have developed a flow-cytometry based in vitro T cell killing assay using a mouse hepatoma cell line, Hepa1-6, and Plasmodium berghei GFP expressing sporozoites. Using this assay, P. berghei TRAP-specific CD8+ T cell enriched splenocytes were shown to inhibit liver-stage parasites in an effector-to-target ratio dependent manner. Further development of this assay using human hepatocytes and P. falciparum would provide a new method to pre-clinically screen vaccine candidates and to elucidate mechanisms of protection in vitro.  相似文献   

18.
Apical Membrane Antigen 1 (AMA1), a merozoite protein essential for red cell invasion, is a candidate malaria vaccine component. Immune responses to AMA1 can protect in experimental animal models and antibodies isolated from AMA1-vaccinated or malaria-exposed humans can inhibit parasite multiplication in vitro. The parasite is haploid in the vertebrate host and the genome contains a single copy of AMA1, yet on a population basis a number of AMA1 molecular surface residues are polymorphic, a property thought to be primarily as a result of selective immune pressure. After immunisation with AMA1, antibodies more effectively inhibit strains carrying homologous AMA1 genes, suggesting that polymorphism may compromise vaccine efficacy. Here, we analyse induction of broad strain inhibitory antibodies with a multi-allele Plasmodium falciparum AMA1 (PfAMA1) vaccine, and determine the relative importance of cross-reactive and strain-specific IgG fractions by competition ELISA and in vitro parasite growth inhibition assays. Immunisation of rabbits with a PfAMA1 allele mixture yielded an increased proportion of antibodies to epitopes common to all vaccine alleles, compared to single allele immunisation. Competition ELISA with the anti-PfAMA1 antibody fraction that is cross-reactive between FVO and 3D7 AMA1 alleles showed that over 80% of these common antibodies were shared with other PfAMA1 alleles. Furthermore, growth inhibition assays revealed that for any PfAMA1 allele (FVO or 3D7), the cross-reactive fraction alone, on basis of weight, had the same functional capacity on homologous parasites as the total affinity-purified IgGs (cross-reactive+strain-specific). By contrast, the strain-specific IgG fraction of either PfAMA1 allele showed slightly less inhibition of red cell invasion by homologous strains. Thus multi-allele immunisation relatively increases the levels of antibodies to common allele epitopes. This explains the broadened cross inhibition of diverse malaria parasites, and suggests multi-allele approaches warrant further clinical investigation.  相似文献   

19.
Malaria is transmitted by Plasmodium-infected anopheles mosquitoes. Widespread resistance of mosquitoes to insecticides and resistance of parasites to drugs highlight the urgent need for malaria vaccines. The most advanced malaria vaccines target sporozoites, the infective form of the parasite. A major target of the antibody response to sporozoites are the repeat epitopes of the circumsporozoite (CS) protein, which span almost one half of the protein. Antibodies to these repeats can neutralize sporozoite infectivity. Generation of protective antibody responses to the CS protein (anti-CS Ab) requires help by CD4 T cells. A CD4 T cell epitope from the CS protein designated T* was previously identified by screening T cells from volunteers immunized with irradiated P. falciparum sporozoites. The T* sequence spans twenty amino acids that contains multiple T cell epitopes restricted by various HLA alleles. Subunit malaria vaccines including T* are highly immunogenic in rodents, non-human primates and humans. In this study we characterized a highly conserved HLA-DRβ1*04:01 (DR4) restricted T cell epitope (QNT-5) located at the C-terminus of T*. We found that a peptide containing QNT-5 was able to elicit long-term anti-CS Ab responses and prime CD4 T cells in HLA-DR4 transgenic mice despite forming relatively unstable MHC-peptide complexes highly susceptible to HLA-DM editing. We attempted to improve the immunogenicity of QNT-5 by replacing the P1 anchor position with an optimal tyrosine residue. The modified peptide QNT-Y formed stable MHC-peptide complexes highly resistant to HLA-DM editing. Contrary to expectations, a linear peptide containing QNT-Y elicited almost 10-fold lower long-term antibody and IFN-γ responses compared to the linear peptide containing the wild type QNT-5 sequence. Some possibilities regarding why QNT-5 is more effective than QNT-Y in inducing long-term T cell and anti-CS Ab when used as vaccine are discussed.  相似文献   

20.
《PloS one》2013,8(2)

Background

Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection.

Methodology/Principal Findings

The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant.

Significance

The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection.

Trial Registration

ClinicalTrials.govNCT00870987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号