首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5 °C and 2.48 mg/(h g) under static aeration solid-state fermentation (SASSF) and 33.9 °C and 5.38 mg/(h g) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30 ± 1 °C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products.  相似文献   

2.
《Process Biochemistry》2010,45(11):1832-1836
In-line monitoring tools are still required to understand and control animal cell processes, particularly in the case of vaccine production. Here, in situ near-infrared spectroscopy (NIRS) quantification of components in culture media was performed using microcarrier-based cultivations of adherent Vero cells. Because microcarriers were found to interfere with NIRS spectra acquisition, a suitable and innovative in situ calibration was developed for bioreactor cultures. A reliable and accurate NIRS technique for the quantification of glucose and lactate was established, with a calibration standard error of 0.30 and 0.21 g l−1, respectively. The robustness of this method was evaluated by performing NIRS calibration with operating conditions similar to those of industrial processes, including parameters such as microcarrier concentrations, cell seeding states and changes in analyte concentration due to feed and harvest strategies. Based on this calibration procedure, the predicted analyte concentrations in unknown samples was measured by NIRS analyses with an accuracy of 0.36 g l−1 for glucose and 0.29 g l−1 for lactate.  相似文献   

3.
《Process Biochemistry》2010,45(8):1427-1431
In-line monitoring tools are still required to understand and control animal cell processes, particularly in the case of vaccine production. Here, in situ near-infrared spectroscopy (NIRS) quantification of components in culture media was performed using microcarrier-based cultivations of adherent Vero cells. Because microcarriers were found to interfere with NIRS spectra acquisition, a suitable and innovative in situ calibration was developed for bioreactor cultures. A reliable and accurate NIRS technique for the quantification of glucose and lactate was established, with a calibration standard error of 0.30 and 0.21 g l−1, respectively. The robustness of this method was evaluated by performing NIRS calibration with operating conditions similar to those of industrial processes, including parameters such as microcarrier concentrations, cell seeding states and changes in analyte concentration due to feed and harvest strategies. Based on this calibration procedure, the predicted analyte concentrations in unknown samples was measured by NIRS analyses with an accuracy of 0.36 g l−1 for glucose and 0.29 g l−1 for lactate.  相似文献   

4.
《Process Biochemistry》2007,42(10):1391-1397
Fermentation parameters for biomass and DHA production of Schizochytrium limacinum OUC88 in a fermenter (working volume 7 L) were optimized using Plackett–Burman and central composite rotatable design. Out of 10 factors studied by Plackett–Burman design, 4 influenced the biomass production significantly. Central composite rotatable design was used to optimize the significant factors and response surface plots were generated. Using these response surface plots and point prediction, optimized values of the factors were determined as follows temperature (°C) 23 °C, aeration rate 1.48 L min−1 L−1, agitation 250 rpm and inoculum cells in mid-exponential phase, the maximum yield of DCW and DHA were 24.1 and 4.7 g L−1, respectively. These predicted values were also verified by validation experiments.  相似文献   

5.
This study investigates the potential of using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to estimate root zone soil moisture at native in-situ measured sites, and at distant sites under the same climatic setting. We obtained in-situ data from Soil Climate Analysis Network (SCAN) sites near the Texas-New Mexico border area, and NDVI and EVI products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra satellite. Results show that soil moisture values of the same depth are highly correlated (r = 0.53 to 0.85) among sites as far as 150 km apart, and that NDVI and EVI are highly correlated at the same site (r = 0.87 to 0.91). Correlation based on raw time series of NDVI and soil moisture is in general higher than that based on deseasonalized time series at every depth. The correlation reaches maximum value when vegetation index (VI) lags soil moisture by 5 to 10 days. NDVI shows a slightly higher correlation with soil moisture than EVI does by using the deseasonalized time series of NDVI and soil moisture. It is found that deseasonalized time series of NDVI and soil moisture are correlated at native sites (r = 0.33 to 0.77), but not at sites where soil moisture is very low. Regression analysis was conducted using deseasonalized time series soil moisture and deseasonalized time series NDVI with a 5-day time lag. Regression models developed at one site and applied to a similar distant site can estimate soil moistures, accounting for 50–88% of the variation in observed soil moistures.  相似文献   

6.
A new strain Trichoderma koningii D-64 was isolated from Singapore soil samples. It produced cellulase, xylanase, and laccase on a variety of carbon sources. Enzyme activities of 3.8 ± 0.3, 40.3 ± 5.1, 6.6 ± 0.3 and 98.8 ± 10.3 U/mL were respectively obtained for FPase, CMCase, β-glucosidase and xylanase in a mixture of 1% cellulose and 2% wheat bran. About 70–95% saccharification efficiency of oil palm empty fruit bunch was obtained using T. koningii D-64 enzymes alone without the supplement of any other commercial enzymes. Strain T. koningii D-64 is therefore a potential cellulase producer for the efficient lignocellulosic biomass conversion to fermentable sugars.  相似文献   

7.
Enzymatic hydrolysis of triglycerides of soy deodorized distillate (DOD), using immobilized Candida rugosa lipase under supercritical carbon dioxide (SC-CO2) medium, was carried out. Optimization of the reaction parameters using response surface methodology based on Box-Behnken model at three levels of pressure (120–180 bar), temperature (40–60 °C) and moisture content (40–80% of triglyceride content) for maximum hydrolysis of triglycerides was arrived by multilinear regression of the experimental results. The optimum conditions for maximum degree of triglyceride hydrolysis (94%) were found to be: pressure of 180 bar, temperature of 43 °C and moisture content of 40% to the triglyceride content. Maximum degree of hydrolysis was achieved with short incubation time of 1.5 h under SC-CO2. Whereas conventional method of hydrolysis in hexane under similar reaction conditions of temperature, moisture and enzyme concentration, needs 5 h to achieve 88% of triglyceride hydrolysis.  相似文献   

8.
Soil organic carbon (SOC) is a key indicator of ecosystem health, with a great potential to affect climate change. This study aimed to develop, evaluate, and compare the performance of support vector regression (SVR), artificial neural network (ANN), and random forest (RF) models in predicting and mapping SOC stocks in the Eastern Mau Forest Reserve, Kenya. Auxiliary data, including soil sampling, climatic, topographic, and remotely-sensed data were used for model calibration. The calibrated models were applied to create prediction maps of SOC stocks that were validated using independent testing data. The results showed that the models overestimated SOC stocks. Random forest model with a mean error (ME) of −6.5 Mg C ha−1 had the highest tendency for overestimation, while SVR model with an ME of −4.4 Mg C ha−1 had the lowest tendency. Support vector regression model also had the lowest root mean squared error (RMSE) and the highest R2 values (14.9 Mg C ha−1 and 0.6, respectively); hence, it was the best method to predict SOC stocks. Artificial neural network predictions followed closely with RMSE, ME, and R2 values of 15.5, −4.7, and 0.6, respectively. The three prediction maps broadly depicted similar spatial patterns of SOC stocks, with an increasing gradient of SOC stocks from east to west. The highest stocks were on the forest-dominated western and north-western parts, while the lowest stocks were on the cropland-dominated eastern part. The most important variable for explaining the observed spatial patterns of SOC stocks was total nitrogen concentration. Based on the close performance of SVR and ANN models, we proposed that both models should be calibrated, and then the best result applied for spatial prediction of target soil properties in other contexts.  相似文献   

9.
《Process Biochemistry》2014,49(4):673-680
Strain Trichoderma koningii D-64 was improved for enhanced cellulase production. A potential mutant MF6 was obtained and its enzymes contained filter paper cellulase (FPase), carboxymethylcellulase (CMCase), β-glucosidase and xylanase with respective activities of 2.0, 1.3, 2.0 and 3.0 folds of those for the parental strain. MF6 cellulases showed enhanced hydrolysis performance for the treated lignocellulosic biomass. Hydrolysis of treated oil palm empty fruit bunch (OPEFB), horticulture wastes (HW) and wood chips (WC) resulted in cellulose to glucose conversion of 96.3 ± 2.2%, 98.2 ± 3.0% and 81.9 ± 1.4%, respectively. The corresponding conversions of xylan to xylose were 96.9 ± 1.5%, 95.0 ± 2.2% and 76.1 ± 3.1%. Consistently, high sugar yield of 770–844 mg/g biomass was obtained for high-loading (10–16%, w/v) of OPEFB hydrolysis and sugar titer of 135.1 g/L was obtained for 16% (w/v) OPEFB loading at 96 h. In addition, MF6 enzymes alone performed equally well for high-loading OPEFB hydrolysis compared to the enzyme mixture of β-glucosidase from Aspergillus niger and cellulase from T. reesei Rut C30.  相似文献   

10.
《农业工程》2014,34(1):66-71
Burned and unburned mineral soils (0–10 cm) from a 40-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at different temperatures (25 °C and 35 °C) and humidity [25%, 50%, and 75% of water holding capacity (WHC)] conditions. Carbon (C) mineralization of all soils was determined using CO2 respiration method. The results showed that CO2 evolution rates of the burned and control soils exhibited similar temporal patterns, and similar responses to temperature and moisture. CO2 evolution rates for all soil samples decreased with incubation time. At different humidity conditions, average rate of C mineralization and cumulative mineralized C from burned and control soils were significantly higher at 35 °C than at 25 °C. This implied that C mineralization was less sensitive to soil moisture than to temperature. In both soils at 25 °C or 35 °C, the amount of soil evolved CO2 over the 90 days incubation increased with increasing moisture content from 25% to 75% WHC. A temperature coefficient (Q10) varied with soil moisture contents. The maximum values recorded for Q10 were 1.7 in control soil and 1.6 in burned soil both at 25% WHC. However, there were no significant differences in Q10 values between the control and burned soils over all moisture ranges (P > 0.05). The data of cumulative C–CO2 released from control and burned soils were fitted to two different kinetic models. The two simultaneous reactions model described mineralization better than the first-order exponential model, which reflected the heterogeneity of substrate quality. Based on these results, it is possible to conclude that temperature and moisture are important in the controls of C mineralization, and the combined effects of these variables need to be considered to understand and predict the response of CO2 release in subtropical ecosystems to climate change.  相似文献   

11.
Methanolic extracts from the biomass of shoot-differentiating and undifferentiating callus cultures of Schisandra chinensis growing respectively on six and two different variants of the Murashige and Skoog (MS) medium, with different concentrations of plant growth regulators, BA (N6-benzyladenine) and NAA (α-naphthaleneacetic acid) were analyzed for the accumulation of two lignans–schisantherin A and gomisin G, using the HPLC method. The amounts of the two compounds in the biomass extracts from shoot-differentiating callus cultures were dependent on the concentration of plant growth regulators in the MS medium. The highest amounts of both lignans were obtained on the MS medium supplemented with 3 mg l−1 BA and 1 mg l−1 NAA. The maximum amount of schisantherin A (33.45 mg 100 g−1 DW) was about 1.3 times higher than in the extracts from the leaves and fruits of parent plants. This is the most important result potentially promising from a practical point of view.  相似文献   

12.
Cellulase production using residues as substrate has been well described, as it is an interesting method of reducing the costs of processes, one of the main bottlenecks for the production of enzymes. This research describes for the first time the use of raw domestic wastewater, which is largely and continuously generated, as a culture base medium for cellulase production. The strain Trichoderma harzianum HBA03 was selected according to the highest activity produced for FPase (5.4 U/mL) and CMCase (8.2 U/mL). Peptone was selected as a nitrogen source and microcrystalline cellulose as the inducer for cellulase production, resulting in FPase activities of 5.6 and 5.0 U/mL and CMCase activities of 12.0 and 14.4 U/mL. The use of domestic wastewater as the culture medium led to an increase of 1.41 and 1.14 fold of FPase and CMCase production, respectively, compared to the synthetic medium. Production was also carried out in a bubble column reactor in which the maximum productivities achieved 10.2 U/L.h (FPase) and 64.6 U/L.h (CMCase). The presented results demonstrate the feasibility of the use of domestic wastewater for cellulases production, thereby contributing to the development of a sustainable process for reusing wastewater with a significant reduction in environmental impact.  相似文献   

13.
The estimation of soil moisture by using the backscattering coefficient of radar in a mountainous region is a challenging task due to the complex topography, which impacts the distribution of soil moisture and changes the backscattering coefficient. Complicated terrain can disturb empirical moisture estimation models, thereby, the resulting estimates of soil moisture are very unlikely reliable. This article proposed an innovative way of integration of the topographic wetness index (TWI) and the backscattering coefficient of soil obtained from the TerraSAR-X image, which improves the accuracy of measurement of the soil moisture. The standard estimation error and the coefficient of determination from the model were used to evaluate the performance of TWI. Our results show that the standard estimation error was decreased from: (1) 4.0% to 3.3% cm3 cm−3 at a depth of 5 cm and (2) 4.5% to 3.9% cm3 cm−3 at a depth of 10 cm. The most reliable estimation was observed at a depth of 5 cm, when it was compared with those of 0–5 cm, 10 cm and 15 cm. The TWI from the digital elevation model (DEM) is useful as a constraint condition for modeling work. This article concludes that the integration of the backscattering coefficient of soil with TWI can significantly reduce the uncertainty in the estimation of soil moisture in a mountainous region.  相似文献   

14.
This work was aimed at optimizing biomass production by the edible basidiomycete Pleurotus ostreatus ATHUM 4438 in a submerged process with enhanced glucan and dietary fibres content. β-Glucan from Pleurotus sp. (pleuran) has been used as food supplements due to its immunosuppressive activity. Like other dietary fibre components, oyster mushroom polysaccharides can stimulate the growth of colon microorganisms (probiotics), i.e. act as prebiotics. We used the FF MicroPlate for substrate utilization and growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint which is useful in selecting media components for media optimization of maximum biomass production. Different carbon sources (95) were used and then 8 of them were tested in shake flask cultures. The effect of various organic and complex nitrogen sources on biomass production was also examined and response surface methodology based on central composite design was applied to explore the optimal medium composition. When the optimized culture medium was tested in a 20-L stirred tank bioreactor, using 57 g L−1 xylose and 37 g L−1 corn steep liquor, high yields (39.2 g L−1) of dry biomass was obtained. The yield coefficients for total glucan and dietary fibres on mycelial biomass formed were 140 ± 4 and 625 ± 9 mg g−1 mycelium dry weight, respectively.  相似文献   

15.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

16.
This paper analyzes the feasibility of the autotrophic production of vegetative cells of Haematococcus pluvialis under conditions resembling outdoors. The experimental design simulates in laboratory with artificial light an outdoors circadian cycle similar to solar illumination. The influence of the irradiance and nutrient concentration on the growth rate and carotenoids accumulation in batch cultures is studied. The cultures were not photoinhibited even under the maximum irradiance-level tested (2500 μE m−2 s−1). Growth was kept nutrient-limited by using nutrients concentration below the standard inorganic medium (10 mM nitrate). When no nutrient-limitation occurs, the growth rate and biomass productivity measured 0.57 day−1 and 0.28 g L−1 day−1, respectively, were similar to the maximum values reported, regardless of the nutritional regime: autotrophic, mixotrophic or heterotrophic. On the other hand, carotenogenesis was only observed under nutrient-limiting conditions when the medium strength was reduced to 0.2- or 0.3-fold of the standard medium. On the other hand, carotenogenesis ceased under severe nutrient deprivation (i.e. nutrient strength of 0.1-fold of the standard medium). The growth rate and the carotenoids accumulation rate were demonstrated to be a function of the average irradiance inside the culture, and of the nutrient content of the medium. A mathematical model for the observed behaviour is proposed. This model was adequate to fit all the experimental data obtained. The values determined for the characteristics parameters are in agreement with those found by other authors. Therefore, the proposed model can be a useful tool for the design and management of Haematococcus cultures, and could allow improving the yield of this production process.  相似文献   

17.
In this study, Nocardia lactamdurans NRRL 3802 was explored for the first time for production of cephamycin C by using solid-state fermentation. The effects of various substrates, moisture content, inoculum size, initial pH of culture medium, additional nitrogen source and amino acids were investigated for the maximum production of cephamycin C by N. lactamdurans NRRL 3802 in solid-state fermentation. Subsequently, selected fermentation parameters were further optimized by response surface methodology (RSM). The soybean flour as a substrate with moisture content of 65%, initial pH of culture medium of 6.5 and inoculum size of 109 CFU/ml (2 × 108 CFU/gds) at 28 ± 2 °C after 4 days gave maximum production of 15.75 ± 0.27 mg/gds of cephamycin C as compared to 8.37 ± 0.23 mg/gds before optimization. Effect of 1,3-diaminopropane on cephamycin C production was further studied, which further increased the yield to 27.64 ± 0.33 mg/gds.  相似文献   

18.
For this study, 2,3-butanediol (BD) fermentation from pure and biomass-derived sugar were optimized in shake-flask and 5-L bioreactor levels using Klebsiella oxytoca ATCC 8724. The results showed that 70 g/L of single sugar (glucose or xylose) and 90 g/L of mixed-sugar (glucose:xylose = 2:1) were optimum concentrations for efficient 2,3-BD fermentation. At optimum sugar concentrations, 2,3-BD productivities were 1.03, 0.64 and 0.50 gL−1 h−1, and yields were 0.43, 0.36 and 0.35 g/g in glucose, xylose and mixed-sugar medium, respectively. The lack of simultaneous utilization of glucose and xylose led to the lowest productivity in the mixed-sugar medium. Detoxification of biomass hydrolyzates was necessary for efficient 2,3-BD fermentation when sugar concentrations in the medium was 90 g/L or higher, but not with sugar concentrations of 30 g/L or less. A fed-batch fermentation using glucose medium led to an increase 2,3-BD titer to 79.4 g/L and yields 0.47 g/g, while productivity decreased to 0.79 gL−1 h−1. However, the fed-batch process was inefficient using mixed-sugar and biomass hydrolyzates because of poor xylose utilization. These results indicated that appropriate biomass processing technologies must be developed to generate separate glucose and xylose streams to produce high 2,3-BD titer from biomass-derived sugar using a fed-batch process.  相似文献   

19.
Species-based ecological indices, such as Ellenberg indicators, reflect plant habitat preferences and can be used to describe local environment conditions. One disadvantage of using vegetation data as a substitute for environmental data is the fact that extensive floristic sampling can usually only be carried out at a plot scale within limited geographical areas. Remotely sensed data have the potential to provide information on fine-scale vegetation properties over large areas. In the present study, we examine whether airborne hyperspectral remote sensing can be used to predict Ellenberg nutrient (N) and moisture (M) values in plots in dry grazed grasslands within a local agricultural landscape in southern Sweden. We compare the prediction accuracy of three categories of model: (I) models based on predefined vegetation indices (VIs), (II) models based on waveband-selected VIs, and (III) models based on the full set of hyperspectral wavebands. We also identify the optimal combination of wavebands for the prediction of Ellenberg values. The floristic composition of 104 (4 m × 4 m grassland) plots on the Baltic island of Öland was surveyed in the field, and the vascular plant species recorded in the plots were assigned Ellenberg indicator values for N and M. A community-weighted mean value was calculated for N (mN) and M (mM) within each plot. Hyperspectral data were extracted from an 8 m × 8 m pixel window centred on each plot. The relationship between field-observed and predicted mean Ellenberg values was significant for all three categories of prediction models. The performance of the category II and III models was comparable, and they gave lower prediction errors and higher R2 values than the category I models for both mN and mM. Visible and near-infrared wavebands were important for the prediction of both mN and mM, and shortwave infrared wavebands were also important for the prediction of mM. We conclude that airborne hyperspectral remote sensing can detect spectral differences in vegetation between grassland plots characterised by different mean Ellenberg N and M values, and that remote sensing technology can potentially be used to survey fine-scale variation in environmental conditions within a local agricultural landscape.  相似文献   

20.
We developed a new pretreatment process for producing high-efficiency bioethanol from a lignocellulosic biomass. Barley straw was pretreated with sodium hydroxide in a twin-screw extruder for continuous pretreatment. The biomass to ethanol ratio (BTER) for optimal pretreatment conditions was evaluated by response surface methodology. Simultaneous saccharification and fermentation (SSF) was conducted to investigate the BTER with 30 FPU/g cellulose of enzyme and 7% (v/v) yeast (Saccharomyces cerevisiae CHY 1011) using 10% (w/v) pretreated biomass under various pretreatment conditions. The maximum BTER was 73.00% under optimal pretreatment conditions (86.61 °C, 0.58 M, and 84.79 mL/min for temperature, sodium hydroxide concentration, and solution flow rate, respectively) and the experimental BTER was 70.01 ± 0.59%. SSF was performed to investigate the optimal enzyme and biomass dosage. As a result, maximum ethanol concentration and ethanol yield were 46.00 g/L and 77.36% at a loading pretreated biomass of 20% with 30 FPU/g cellulose of the enzyme dosage for barley straw to bioethanol. These results are a significant contribution to the production of bioethanol from barley straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号