首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Of 150 cultures capable of degrading petroleum at +6 degrees C, 40 strains growing in the liquid mineral nutrient medium containing petroleum (2%) as a sole source of carbon were selected. Of them, 13 cultures displaying a petroleum degradation rate exceeding 25% were selected. Abilities of these cultures and their associations to utilize fuel oil and its components--oils and benzene resins--were studied. The culture exhibiting degradation rates of fuel oil, its oils, benzene resins, and petroleum amounting to 17, 26, 10, and 51%, respectively, was selected. This culture can be used for cleanup of petroleum pollution under cold climatic conditions.  相似文献   

2.
Out of the 30 strains capable of oil degradation at 4–6°C, four were selected by their ability to degrade 40% of the oil substrate present in the growth medium: Rhodococcus spp. DS-07 and DS-21 and Pseudomonas spp. DS-09 and DS-22. We studied the activity of these strains as degraders of oil products of various condensation degrees (crude oil, masut, petroleum oils, benzene resins and ethanol–benzene resins) at 4–6°C. The maximum degrees of degradation of masut and ethanol–benzene resins were observed in Pseudomonas spp. DS-22 (17.2% and 5.2%, respectively). The maximum degradation of petroleum oils and benzene resins was observed in Rhodococcus spp. DS-07 (40% and 16.6%, respectively). These strains provide a basis for developing biodegrader preparations applicable to the bioremediation of oil-polluted sites under the conditions of a cold climate.  相似文献   

3.
Out of the 30 strains capable of oil degradation at 4-6 degrees C, four were selected by the ability to degrade 40% of the oil substrate present in the growth medium: Rhodococcus spp. DS-07 and DS-21 and Pseudomonas spp. DS-09 and DS-22. We studied the activity of these strains as degraders of oil products of various condensation degrees (crude oil, masut, petroleum oils, benzene resins and ethanol-benzene resins) at 4-6 degrees C. The maximum degrees of degradation of masut and ethanol-benzene resins were observed in Pseudomonas spp. DS-22 (17.2% and 5.2%, respectively). The maximum degradation of petroleum oils and benzene resins was observed in Rhodococcus spp. DS-07 (40% and 16.6%, respectively). The strains provide a basis for developing biodegrader preparations applicable to bioremediation of oil-polluted sites under the conditions of cold climate.  相似文献   

4.
Eighteen strains of bacteria were isolated from activated sludge purifying petroleum-refining wastewaters. These strains were plated on solidified mineral medium supplemented with oil fraction in concentration 1000 mg/l. Four of the strains that grew best in the presence of oil were selected for further studies. The strains were identified based on Bonde's scheme and microscopic observations. Three of them belonged to the genus Arthrobacter and one to the genus Micrococcus. Stationary cultures of single strains and their mixtures were set up in mineral medium containing oil (sterile and non-sterile) as sole carbon source in concentration 1000 mg/l. The oils were found to be removed the most efficiently by a mixture of the strains. After 14 days of culture the amount of oil was utilized by from 63 to 95%. In the next stage of the studies the bacteria were used to inoculate activated sludge. Stationary cultures of the activated sludge were set up in mineral medium with oil. The utilisation of petroleum products by non-inoculated activated sludge (control), activated sludge inoculated with a single strain or a mixture of all four strains was examined. In both inoculated activated sludge cultures approximately 80% of the oils were removed, compared to 60% in the control activated sludge. Therefore, inoculated activated sludge showed 20% higher effectiveness of removal of petroleum derivatives.  相似文献   

5.
A series of microbial associations capable of degrading various petroleum oils, emulsols, and crude oil were obtained by selection during periodic or continuous cultivation. The formation of these associations and oil-product degradation occurred most efficiently during aerobic flow cultivation. Under these conditions, oils were degraded by 92% on average. The microbial degradation of a petroleum oil depended on its brand, concentration, emulsification, and aeration.  相似文献   

6.
A series of microbial associations capable of the biodegradation of various petroleum oils, emulsols, and crude oil were obtained by selection during periodic or continuous cultivation. Formation of the associations and oil-product degradation occurred most efficiently during aerobic flow cultivation. Under these conditions, oils were degraded by 92% on average. The microbial degradation of a petroleum oil depended on its brand, concentration, emulsification, and aeration.  相似文献   

7.
Summary This study examined the microbial degradation of fuel oil by nine highly adapted different commercially available mixed bacterial cultures (DBC-plus, Flow Laboratories, Meckenheim, F.R.G.) and a bacterial community from a domestic sewage sludge sample. All mixed cultures were cultivated under aerobic batch conditions shaking (110 rpm) at 20°C in a mineral base medium containing 1 or 5% (v/v) fuel oil as the sole carbon source. Percent degradation of fuel oil and the n-alkane fraction was recorded for the nine DBC-plus cultures and the mixed population of the activated sludge sample. The increase in colony counts, protein, and optical density was studied during a 31-day incubation period for DBC-plus culture A, DBC-plus culture A2 and the activated sludge sample. The activated sludge mixed culture was most effective in degrading fuel oil, but various isolated bacterial strains from this bacterial community were not able to grow on fuel oil as the sole carbon source. In contrast, the n-alkane degradation rates of the DBC-cultures were lower, but single strains from the commercially available mixed cultures were able to mineralize fuel oil hydrocarbons. Strains ofPseudomonas aeruginosa were isolated most frequently and these organisms were able to grow very rapidly on fuel oil as a complex sole carbon source. The results indicate that fuel oil degradation in domestic sewage sludge is performed by mixed populations of naturally occurring bacteria and does not depend on the application of highly adapted commercially available cultures.  相似文献   

8.
《农业工程》2021,41(5):416-423
The use of microorganisms for remediation and restoration of hydrocarbons contaminated soils is an effective and economic solution. The current study aims to find out efficient telluric filamentous fungi to degrade petroleum hydrocarbons pollutants. Six fungal strains were isolated from used engine (UE) oil contaminated soil. Fungi were screened for their ability to degrade crude oil, diesel and UE oil using 2.6-dichlorophenol indophenol (DCPIP). Two isolates were selected, identified and registered at NCBI as Aspergillus ustus HM3.aaa and Purpureocillium lilacinum HM4.aaa. Fungi were tested for their tolerance to different concentration of petroleum oils using radial growth diameter assay. Hydrocarbons removal percentage was evaluated gravimetrically. The degradation kinetic of crude oil was studied at a time interval of 10 days. A.ustus was the most tolerant fungi to high concentration of petroleum oils in solid medium. Quantitative analysis showed that crude oil was the most degraded oil by both isolate; P. lilacinium and A. ustus removed 44.55% and 30.43% of crude oil, respectively. The two fungi were able to degrade, respectively, 27.66 and 21.27% of diesel and 14.39 and 16.00% of UE oil. As compared to the controls, these fungi accumulated high biomass in liquid medium with all petroleum oils. Likewise, crude oil removal rate constant (K) and half-lives (t1/2) were 0.02 day−1, 34.66 day and 0.015 day−1, 46.21 day for P. lilacinium and A. ustus, respectively. The selected fungi appear interesting for petroleum oils biodegradation and their application for soil bioremediation require scale-up studies.  相似文献   

9.
Composting of horse manure was used as a means of degradation of two oil wastes, oil sludge from petrol stations and petroleum residues from a refinery. Paraffin oil was chosen as a reference. Oil wastes decomposed to 78–93% during 4.5 months of composting. The degradation of the waste oils was higher than that of the reference paraffin oil and no difference was found between the two types of oil wastes concerning their decomposition. At the end of the experiment, most of the polyaromatic hydrocarbons had been degraded except pyrene, chrysene and dibenz(ah)anthracene. Gaseous losses of oil compounds through volatilisation from composts were found not to be significant.  相似文献   

10.
Mixed microbial cultures, previously enriched on Bunker C fuel oil, grew on and degraded Bunker C fuel oil at temperatures ranging from 5 to 28 C. At 15 C, 41 to 85% of the benzene-soluble components of Bunker C disappeared after incubation for 7 days; at 5 C the values ranged from 21 to 52% after 14 days of incubation. A Nocardia sp. isolated from a culture enriched on Bunker C oil grew on Venezuelan crude oil, Bunker C, hexadecane, and a hydrocarbon mixture at temperatures of 5 and 15 C. The 10-C decrease in temperature resulted in an average 2.2-fold decrease in generation time of the bacteria. Gas-liquid chromatographic measurements of Venezuelan and Arabian crude oils which had been incubated with the Nocardia sp. showed significant degradation of the n-alkane portion and the chromatographically unresolved components of the oils. The concentration of elemental nitrogen required to bring about the disappearance of 1 mg of hexadecane by the Nocardia sp. was 0.5 mg. The results confirm suggestions that the rate of natural biodegradation of oil in marine temperate-to-polar zones is probably limited by low temperatures and phosphorus concentrations, but suggest that the concentrations of nitrogen occurring naturally are probably not rate-limiting factors.  相似文献   

11.
ABSTRACT

Petroleum tar produced during the processing of crude oil is one of the earth's major pollutants. The potential of certain soil bacteria in the biodegradation of petroleum tar was assessed to develop an active indigenous bacterial consortium for bioremediation of petroleum tar–polluted sites of Assam, India. In vitro enrichment cultures of five Pseudomonas spp. were found to metabolize petroleum tar. The Fourier transform infrared (FTIR) analyses of the enrichment cultures revealed the presence of the functional groups, viz., –OH, –CHO, C?O, and –COOH, which provided evidence for the biodegradation of petroleum tar. Further, gas chromatography–flame ionization detection (GC-FID) analyses revealed complete degradation of low-molecular-weight hydrocarbons, and the subsequent appearance of some additional peaks reflected the formation of intermediate metabolites during the degradation of petroleum tar. A mixed culture with 0.1% Tween 80 as a surfactant exhibited almost complete degradation in contrast to the degradation by the mixed culture without Tween 80. This confirmed the effect of a surfactant for acceleration of the biodegradation process of petroleum tar.  相似文献   

12.
Oil degradation in soil.   总被引:9,自引:0,他引:9  
The environmental effects of adding certain selected petroleum products to field soils at widely separated geographical locations under optimum conditions for biodegradation were studied. The locations selected for study of soil biodegradation of six oils (used crankcase oil from cars, used crankcase oil from trucks, an Arabian Heavy crude oil, a Coastal Mix crude oil, a home heating oil no. 2, and a residual fuel oil no. 6) were Marcus Hook, Pennsylvania, Tulsa, Oklahoma, and Corpus Christi, Texas. The investigative process, covering a period of 1 year at each location, was conducted in 14 fields plots (1.7 by 3.0 m) to which the oils were added in a single application at a rate of 11.9 m3/4 X 10(3) m2. One-half of the plots at each location were fertilized, and the incorporation of the oils and fertilizers was accomplished with rototillers to a depth of 10 to 15 cm. Concentrations of all oils decreased significantly at all locations. The average reduction ranged from 48.5 to 90.0% depending upon the type of oil and location. Rates of degradation did not exceed 2.4 m3/4 X 10(3) m2 per month. Compositional changes in the oil with time were investigated using silica gel fractionation, gas chromatography, and ultraviolet absorbance. With the possible exception of the two fuel oils, the compositional changes were generally in the same direction for all of the oils. The silica gel fractionation and gravimetric data on residual oils show that all classes of compounds were degraded, but the more polar type degrade more slowly. Analysis of runoff water, leachate, and soils indicated that at the concentration applied no oil less was observed from these plots via water movement. No significant movement of lead compounds added to the soils in the used crankcase oils was observed. Significant increases in hydrocarbon-utilizing microorganisms were demonstrated in all treated plots using either the pure hydrocarbon, n-hexadecane, or the applied oils as the growth substrate. These increases were usually sustained throughout the year. Significant increases in hydrocarbon-utilizing fungi were not demonstrated by the plating technique used. The concentrations of residual oils or their oxidation products were of sufficient magnitude in the treated plots, 9 months after application, to cause significant inhibition of plant growth. From the data obtained, it was not possible to determine the type of compounds causing this inhibition or their long-term environmental effects.  相似文献   

13.
Crude and fuel oils were compared for ability to support growth of a mixed population of estuarine bacteria. A total of four oils, two crude and two fuel oils, were examined. It was found that each of the oils supported a unique population of bacteria and yeasts, with respect to generic composition. Low-sulfur, high-saturate, South Louisiana crude oil was found to be highly susceptible to degradation. In contrast, the dense, high-sulfur, high-aromatic, Bunker C fuel oil was strongly refractory to microbial degradation.  相似文献   

14.
Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR (1H and 13C). The chemical composition of sunflower oil biodiesel was determined by GC–MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by 1H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.  相似文献   

15.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

16.
Hydrocracking of the oils of Botryococcus braunii to transport fuels   总被引:1,自引:0,他引:1  
Hydrocarbon oils of the alga Botryococcus braunii, extracted from a natural "bloom" of the plant, have been hydrocracked to produce a distillate comprising 67% gasoline fraction, 15% aviation turbine fuel fraction, 15% diesel fuel fraction, and 3% residual oil. The distillate was examined by a number of standard petroleum industry test methods. This preliminary investigation indicates that the oils of B. braunii are suitable as a feedstock material for hydrocracking to transport fuels.  相似文献   

17.
Five axenic cultures and a mixed culture were examined for ability to degrade South Louisiana, Brass River Nigerian, Anaco Venezuelan, and Altamont crude oils. A wax was observed during microbial degradation of Altamont crude oil, but not during weathering of the oil. The high-boiling n-alkanes in the wax were associated with microbial degradation of the oil and appeared to be similar to components of tarballs found in the open ocean.  相似文献   

18.
Benzene is a highly toxic industrial compound that is essential to the production of various chemicals, drugs, and fuel oils. Due to its toxicity and carcinogenicity, much recent attention has been focused on benzene biodegradation, especially in the absence of molecular oxygen. However, the mechanism by which anaerobic benzene biodegradation occurs is still unclear. This is because until the recent isolation of Dechloromonas strains JJ and RCB no organism that anaerobically degraded benzene was available with which to elucidate the pathway. Although many microorganisms use an initial fumarate addition reaction for hydrocarbon biodegradation, the large activation energy required argues against this mechanism for benzene. Other possible mechanisms include hydroxylation, carboxylation, biomethylation, or reduction of the benzene ring, but previous studies performed with undefined benzene-degrading cultures were unable to clearly distinguish which, if any, of these alternatives is used. Here we demonstrate that anaerobic nitrate-dependent benzene degradation by Dechloromonas strain RCB involves an initial hydroxylation, subsequent carboxylation, and loss of the hydroxyl group to form benzoate. These studies provide the first pure-culture evidence of the pathway of anaerobic benzene degradation. The outcome of these studies also suggests that all anaerobic benzene-degrading microorganisms, regardless of their terminal electron acceptor, may use this pathway.  相似文献   

19.
Water-based metal-working fluids used in large-scale industrial operations consist of many components, but in the most commonly used formulations only three classes of components are present in high enough concentrations that they could, in principle, provide enough carbon to support the high bacterial densities (10 CFU/ml) often observed in contaminated factory fluids. These components are petroleum oil (1 to 5%), petroleum sulfonates (0.1 to 0.5%), and fatty acids (less than 0.1%, mainly linoleic and oleic acids supplied as tall oils). We isolated pure strains of predominating bacteria from contaminated reservoirs of two metal-working systems and randomly selected 12 strains which we tested in liquid culture for growth with each of the metal-working fluid components as the sole source of carbon. Of the 12 strains, 7 reached high density (10 CFU/ml from an initial inoculum of less than 2 x 10) in 24 h, and 1 strain did the same in 48 h with 0.05% oleic or linoleic acid as the carbon source. These same strains also grew on 1% naphthenic petroleum oil but required up to 72 h to reach densities near 10 CFU/ml. One strain grew slightly and the others not at all on the petroleum sulfonates. The four remaining strains did not grow on any of the components, even though they were among the predominating bacteria in the contaminated system. Of the seven strains that grew best on the fatty acids and on the naphthenic petroleum oil, five were tentatively identified as Acinetobacter species and two were identified as Pseudomonas species. Four of the bacteria that did not grow were tentatively identified as species of Pseudomonas, and one could not be identified.  相似文献   

20.
Benzene is a highly toxic industrial compound that is essential to the production of various chemicals, drugs, and fuel oils. Due to its toxicity and carcinogenicity, much recent attention has been focused on benzene biodegradation, especially in the absence of molecular oxygen. However, the mechanism by which anaerobic benzene biodegradation occurs is still unclear. This is because until the recent isolation of Dechloromonas strains JJ and RCB no organism that anaerobically degraded benzene was available with which to elucidate the pathway. Although many microorganisms use an initial fumarate addition reaction for hydrocarbon biodegradation, the large activation energy required argues against this mechanism for benzene. Other possible mechanisms include hydroxylation, carboxylation, biomethylation, or reduction of the benzene ring, but previous studies performed with undefined benzene-degrading cultures were unable to clearly distinguish which, if any, of these alternatives is used. Here we demonstrate that anaerobic nitrate-dependent benzene degradation by Dechloromonas strain RCB involves an initial hydroxylation, subsequent carboxylation, and loss of the hydroxyl group to form benzoate. These studies provide the first pure-culture evidence of the pathway of anaerobic benzene degradation. The outcome of these studies also suggests that all anaerobic benzene-degrading microorganisms, regardless of their terminal electron acceptor, may use this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号