首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The distribution of unstable nucleotide positions with a higher frequency of homoplastic mutations was analyzed in hypervariable segment 1 (HVS1) of the major noncoding region of human mtDNA. Three motifs (GTAC, ACCC, CCTC) proved to be associated with a higher rate of point substitutions at unstable positions. The motifs were often arranged in direct, including tandem, repeats. Motifs CCTC and ACCC were found in extended poly(C) tracts, which form direct repeats associated with deletions and tandem duplications. The results suggested that the inconstancy of the human mitochondrial genome is to a great extent determined by context-dependent mutations.  相似文献   

2.
Taylor JS  Breden F 《Genetics》2000,155(3):1313-1320
The standard slipped-strand mispairing (SSM) model for the formation of variable number tandem repeats (VNTRs) proposes that a few tandem repeats, produced by chance mutations, provide the "raw material" for VNTR expansion. However, this model is unlikely to explain the formation of VNTRs with long motifs (e.g., minisatellites), because the likelihood of a tandem repeat forming by chance decreases rapidly as the length of the repeat motif increases. Phylogenetic reconstruction of the birth of a mitochondrial (mt) DNA minisatellite in guppies suggests that VNTRs with long motifs can form as a consequence of SSM at noncontiguous repeats. VNTRs formed in this manner have motifs longer than the noncontiguous repeat originally formed by chance and are flanked by one unit of the original, noncontiguous repeat. SSM at noncontiguous repeats can therefore explain the birth of VNTRs with long motifs and the "imperfect" or "short direct" repeats frequently observed adjacent to both mtDNA and nuclear VNTRs.  相似文献   

3.
The WT1 gene is known to play a role in at least some cases of Wilms tumor (WT). The first exon of the gene is highly GC rich and contains many short tandem di- and trinucleotide repeats, interrupted direct repeats, and CCTG (CAGG) motifs that have been identified as hotspots for DNA deletions. We have analyzed 80 WT patient samples for mutations in the first exon of WT1, either by SSCP analysis of the first 131 bp of the coding portion of WT1 exon 1 or by size analysis of a PCR product encompassing the coding region of exon 1 in addition to flanking noncoding regions. We report here the occurrence of somatic and germ-line deletion and insertion mutations in this portion of the gene in four WT patients. The mutations are flanked by short direct repeats, and the breakpoints are within 5 nt of a CCTG (CAGG) sequence. These data suggest that a distinctive mutational mechanism, previously unrecognized for this gene, is important for the generation of DNA mutations at the WT1 locus.  相似文献   

4.
Calmodulin regulates the function of numerous proteins by binding to short regions on the target molecule. IQ motifs, which are found in over 100 human proteins, appear in tandem repeats and bind calmodulin in the absence of Ca(2+). One of these IQ-containing proteins, IQGAP1, interacts with several targets, including Cdc42, beta-catenin, E-cadherin, and actin, in a calmodulin-regulated manner. To elucidate the molecular mechanism by which apocalmodulin and Ca(2+)/calmodulin differentially regulate IQGAP1, a series of constructs of IQGAP1 with selected point mutations of the four tandem IQ motifs were generated. Mutating the basic charged arginine residues in all four IQ motifs abrogated binding of IQGAP1 to apocalmodulin, but had no effect on its interaction with Ca(2+)/calmodulin. Analysis of IQGAP1 constructs with point mutations in single, double, or triple IQ motifs revealed that apocalmodulin bound only to IQ3 and IQ4. By contrast to the arginine mutant constructs, mutation of selected hydrophobic residues in the IQ motifs produced an IQGAP1 protein incapable of binding either apocalmodulin or Ca(2+)/calmodulin. These results, which differ from the conventional model of Ca(2+)-independent binding of calmodulin to IQ motifs, provide insight into the complexity of the molecular interactions between calmodulin and IQ motifs.  相似文献   

5.
Earlier we found a human hypervariable genomic region (GVR). The DNA hybridization probe isolated from this region detects multiple hypervariability of restriction DNA fragments from genomic loci. The sequencing data suggest that the genomic instability and variability are associated with tandem DNA repeats. The DNA hybridization probe contains two families of simple DNA repeats designated as 'apo' and 'tau'. The (TC)n-rich family of DNA 'tau'-repeats bears some similarity to the simple transcribed repeats of Drosophila virilis, simple repetitive motifs of the human proenkephaline gene exon 1, and short sites of retroviral LTR ends. Apo-repeats show an unusual similarity to Rauscher viral env gene site. Besides GVR, apo- and tau-like repeats are localized in other genomic loci and can form separate tandem clusters and terminal repeats flanking certain copies of retroposons (Alu-SINES).  相似文献   

6.
Protein domains constructed from tandem α-helical repeats have until recently been primarily associated with protein scaffolds or RNA recognition. Recent crystal structures of human mitochondrial termination factor MTERF1 and Bacillus cereus alkylpurine DNA glycosylase AlkD bound to DNA revealed two new superhelical tandem repeat architectures capable of wrapping around the double helix in unique ways. Unlike DNA sequence recognition motifs that rely mainly on major groove read-out, MTERF and ALK motifs locate target sequences and aberrant nucleotides within DNA by resculpting the double-helix through extensive backbone contacts. Comparisons between MTERF and ALK repeats, together with recent advances in ssRNA recognition by Pumilio/FBF (PUF) domains, provide new insights into the fundamental principles of protein-nucleic acid recognition.  相似文献   

7.
Mack AM  Crawford NM 《The Plant cell》2001,13(10):2319-2332
The in vitro DNA binding activity of the Arabidopsis Tag1 transposase (TAG1) was characterized to determine the mechanism of DNA recognition. In addition to terminal inverted repeats, the Tag1 element contains four different subterminal repeats that flank a transcribed region encoding a 729-amino acid protein. A single site-specific DNA binding domain is located near the N terminus of TAG1, between residues 21 and 133. This domain binds specifically to the AAACCC and TGACCC subterminal repeats, found near the 5' and 3' ends of the element, respectively. The ACCC sequence within these repeats is critical for recognition because mutations at positions 3, 5, and 6 abolished binding, yet the first two bases also are important because substitutions at these positions decreased binding by up to 90%. Weak interaction also occurs with the terminal inverted repeats, but no binding was observed to the other two 3' subterminal repeat regions. Sequence analysis of the TAG1 DNA binding domain revealed a C(2)HC zinc finger motif. Tests for metal dependence showed that DNA binding activity was inhibited by divalent metal chelators and greatly enhanced by zinc. Furthermore, mutation of each cysteine residue predicted to be a metal ligand in the C(2)HC motif abolished DNA binding. Together, these data show that the DNA binding domain of TAG1 specifically binds to distinct subterminal repeats and contains a zinc finger.  相似文献   

8.
An HJ  Lee D  Lee KH  Bhak J 《BMC genomics》2004,5(1):97-5

Background  

A significant portion (about 8% in the human genome) of mammalian mRNA sequences contains AU (Adenine and Uracil) rich elements or AREs at their 3' untranslated regions (UTR). These mRNA sequences are usually stable. However, an increasing number of observations have been made of unstable species, possibly depending on certain elements such as Alu repeats. ARE motifs are repeats of the tetramer AUUU and a monomer A at the end of the repeats ((AUUU)nA). The importance of AREs in biology is that they make certain mRNA unstable. Proto-oncogene, such as c-fos, c-myc, and c-jun in humans, are associated with AREs. Although it has been known that the increased number of ARE motifs caused the decrease of the half-life of mRNA containing ARE repeats, the exact mechanism is as of yet unknown. We analyzed the occurrences of AREs and Alu and propose a possible mechanism for how human mRNA could acquire and keep AREs at its 3' UTR originating from Alu repeats.  相似文献   

9.
In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.  相似文献   

10.
The mitochondrial (mt) DNA control region (CR) of dogs and wolves contains an array of imperfect 10 bp tandem repeats. This region was studied for 14 domestic dogs representing the four major phylogenetic groups of nonrepetitive CR and for 5 wolves. Three repeat types were found among these individuals, distributed so that different sequences of the repeat types were formed in different molecules. This enabled a detailed study of the arrays and of the mutation events that they undergo. Extensive heteroplasmy was observed in all individuals; 85 different array types were found in one individual, and the total number of types was estimated at 384. Among unrelated individuals, no identical molecules were found, indicating a high rate of evolution of the region. By performing a pedigree analysis, array types which had been inherited from mother to offspring and array types which were the result of somatic mutations, respectively, could be identified, showing that about 20% of the molecules within an individual had somatic mutations. By direct pairwise comparison of the mutated and the original array types, the physiognomy of the inserted or deleted elements (indels) and the approximate positions of the mutations could be determined. All mutations could be explained by replication slippage or point mutations. The majority of the indels were 1-5 repeats long, but deletions of up to 17 repeats were found. Mutations were found in all parts of the arrays, but at a higher frequency in the 5' end. Furthermore, the inherited array types within the mother-offspring pair were aligned and compared so that germ line mutations could be studied. The pattern of the germ line mutations was approximately the same as that of the somatic mutations.  相似文献   

11.
I Davidson  J H Xiao  R Rosales  A Staub  P Chambon 《Cell》1988,54(7):931-942
We have purified a protein (TEF-1) that specifically binds to two sequence unrelated motifs (GT-IIC and Sph) of the simian virus 40 (SV40) enhancer. TEF-1 binds cooperatively to templates containing tandem but not inverted or spaced repeats of its cognate motifs. This cooperative binding correlates with the ability of the tandem repeats to generate enhancer activity in vivo. In contrast, TEF-1 and a second SV40 enhancer binding protein, TEF-2, bind independently to templates containing the cognate motifs of both proteins (GT-I and either GT-IIC or Sph motifs) even though these motifs cooperate in enhancer activity in vivo. These results allow us to distinguish different classes of enhancer factors.  相似文献   

12.
Two new polymorphic Alu elements (HS2.25 and HS4.14) belonging to the young (Ya5/8) subfamily of human-specific Alu repeats have been identified. DNA sequence analysis of both Alu repeats revealed that each Alu repeat had a long 3′-oligo-dA-rich tail (41 and 52 nucleotides in length) and a low level of random mutations. HS2.25 and HS4.14 were flanked by short precise direct repeats of 8 and 14 nucleotides in length, respectively. HS2.25 was located on human chromosome 13, and HS4.14 on chromosome 1. Both Alu elements were absent from the orthologous positions within the genomes of non-human primates, and were highly polymorphic in a survey of twelve geographically diverse human groups.  相似文献   

13.
A comparative analysis of the neomycin phosphotransferase (nptII) gene expression was performed in two groups of transformed tobacco plants, one of which included plants with direct and inverted tandem uidA gene repeats in the T-DNA insertion. This insertion of inverted repeats was shown to reduce the level of stable nptII gene expression to 20%, as compared with 65% in the control transformants. The level of unstable expression of this gene substantially increased (up to 71.4% vs. 5.5% in the control group) when homologous sequences were brought together with direct tandem repeats in the genome of hybrid plants.  相似文献   

14.
The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiple of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1, 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between these alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations.  相似文献   

15.
Mutation patterns of amino acid tandem repeats in the human proteome   总被引:1,自引:0,他引:1  

Background

Amino acid tandem repeats are found in nearly one-fifth of human proteins. Abnormal expansion of these regions is associated with several human disorders. To gain further insight into the mutational mechanisms that operate in this type of sequence, we have analyzed a large number of mutation variants derived from human expressed sequence tags (ESTs).

Results

We identified 137 polymorphic variants in 115 different amino acid tandem repeats. Of these, 77 contained amino acid substitutions and 60 contained gaps (expansions or contractions of the repeat unit). The analysis showed that at least about 21% of the repeats might be polymorphic in humans. We compared the mutations found in different types of amino acid repeats and in adjacent regions. Overall, repeats showed a five-fold increase in the number of gap mutations compared to adjacent regions, reflecting the action of slippage within the repetitive structures. Gap and substitution mutations were very differently distributed between different amino acid repeat types. Among repeats containing gap variants we identified several disease and candidate disease genes.

Conclusion

This is the first report at a genome-wide scale of the types of mutations occurring in the amino acid repeat component of the human proteome. We show that the mutational dynamics of different amino acid repeat types are very diverse. We provide a list of loci with highly variable repeat structures, some of which may be potentially involved in disease.  相似文献   

16.
Slipped-strand mispairing: a major mechanism for DNA sequence evolution   总被引:141,自引:13,他引:128  
Simple repetitive DNA sequences are a widespread and abundant feature of genomic DNA. The following several features characterize such sequences: (1) they typically consist of a variety of repeated motifs of 1-10 bases--but may include much larger repeats as well; (2) larger repeat units often include shorter ones within them; (3) long polypyrimidine and poly-CA tracts are often found; and (4) tandem arrangements of closely related motifs are often found. We propose that slipped-strand mispairing events, in concert with unequal crossing- over, can readily account for all of these features. The frequent occurrence of long tandem repeats of particular motifs (polypyrimidine and poly-CA tracts) appears to result from nonrandom patterns of nucleotide substitution. We argue that the intrahelical process of slipped-strand mispairing is much more likely to be the major factor in the initial expansion of short repeated motifs and that, after initial expansion, simple tandem repeats may be predisposed to further expansion by unequal crossing-over or other interhelical events because of their propensity to mispair. Evidence is presented that single-base repeats (the shortest possible motifs) are represented by longer runs in mammalian introns than would be expected on a random basis, supporting the idea that SSM may be a ubiquitous force in the evolution of the eukaryotic genome. Simple repetitive sequences may therefore represent a natural ground state of DNA unselected for coding functions.   相似文献   

17.

Background

Ancestral reconstructions of mammalian genomes have revealed that evolutionary breakpoint regions are clustered in regions that are more prone to break and reorganize. What is still unclear to evolutionary biologists is whether these regions are physically unstable due solely to sequence composition and/or genome organization, or do they represent genomic areas where the selection against breakpoints is minimal.

Methodology and Principal Findings

Here we present a comprehensive study of the distribution of tandem repeats in great apes. We analyzed the distribution of tandem repeats in relation to the localization of evolutionary breakpoint regions in the human, chimpanzee, orangutan and macaque genomes. We observed an accumulation of tandem repeats in the genomic regions implicated in chromosomal reorganizations. In the case of the human genome our analyses revealed that evolutionary breakpoint regions contained more base pairs implicated in tandem repeats compared to synteny blocks, being the AAAT motif the most frequently involved in evolutionary regions. We found that those AAAT repeats located in evolutionary regions were preferentially associated with Alu elements.

Significance

Our observations provide evidence for the role of tandem repeats in shaping mammalian genome architecture. We hypothesize that an accumulation of specific tandem repeats in evolutionary regions can promote genome instability by altering the state of the chromatin conformation or by promoting the insertion of transposable elements.  相似文献   

18.
Kiani C  Chen L  Lee V  Zheng PS  Wu Y  Wen J  Cao L  Adams ME  Sheng W  Yang BB 《Biochemistry》2003,42(23):7226-7237
Members of the large aggregating chondroitin sulfate proteoglycans are characterized by an N-terminal fragment known as G1 domain, which is composed of an immunoglobulin (IgG)-like motif and two tandem repeats (TR). Previous studies have indicated that the expressed product of aggrecan G1 domain was not secreted. Here we demonstrated that the inability of G1 secretion was associated with the tandem repeats but not the IgG-like motif, and specifically with TR1 of aggrecan. We also demonstrated that the G2 domain, a domain unique to aggrecan, had a similar effect on product secretion. The sequence of TR1 of G1 is highly conserved across species, which suggested similar functions played by these motifs. In a yeast two-hybrid assay, TR1 interacted with the calcium homeostasis endoplasmic reticulum protein. Deletion/mutation experiments indicated that the N-terminal fragment of TR1, in particular, the amino acids H(2)R(4) of this motif were key to its effect on product secretion. However, the N-terminal 55 amino acids were required to exert this function. Taken together, our study suggests a possible molecular mechanism for the function of the tandem repeats in product processing.  相似文献   

19.
Mammary tumors are the most common tumor type in both human and canine females. Mutations in the breast cancer susceptibility gene, BRCA2, have been found in most cases of inherited human breast cancer. Similarly, the canine BRCA2 gene locus has been associated with mammary tumors in female dogs. However, deleterious mutations in canine BRCA2 have not been reported, thus far. The BRCA2 protein is involved in homologous recombination repair via its interaction with RAD51 recombinase, an interaction mediated by 8 BRC repeats. These repeats are 26-amino acid, conserved motifs in mammalian BRCA2. Previous structural analyses of cancer-associated mutations affecting the BRC repeats have shown that the weakening of RAD51''s affinity for even 1 repeat is sufficient to increase breast cancer susceptibility. In this study, we focused on 2 previously reported canine BRCA2 mutations (T1425P and K1435R) in BRC repeat 3 (BRC3), derived from mammary tumor samples. These mutations affected the interaction of canine BRC3 with RAD51, and were considered deleterious. Two BRC3 mutations (K1440R and K1440E), reported in human breast cancer patients, occur at amino acids corresponding to those of the K1435R mutation in dogs. These mutations affected the interaction of canine BRC3 with RAD51, and may also be considered deleterious. The two BRC3 mutations and a substitution (T1430P), corresponding to T1425P in canine BRCA2, were examined for their effects on human BRC3 function and the results were compared between species. The corresponding mutations and the substitution showed similar results in both human and canine BRC3. Therefore, canine BRCA2 may be a good model for studying human breast cancer caused by BRCA2 mutations.  相似文献   

20.
Cadmium (Cd) is a non-essential element and is a widespread environmental pollutant. Exposure to cadmium can result in cytotoxic, carcinogenic and mutagenic effects. Mutagenesis is indicative of genetic instability and can be assayed using microsatellites. Microsatellites or simple sequence repeats (SSRs) are composed of tandem repeats of short sequence motifs (1–6 bp) that are polymorphic, mainly in the number of tandem repeated units. Therefore, chromosomic mutations like inversion, deletion or translocation and point mutations can be detected by this type of molecular marker. In this study we have evaluated the mutagenic/genotoxic effects of cadmium in lettuce (Lactuca sativa L.). Five-week-old lettuce plants grown in a modified Hoagland's medium were exposed for a further 14 days to a medium containing 100 μM Cd(NO3)2. Genomic DNA was extracted from lettuce leaves and roots, harvested at days 0, 1, 3, 7 and 14, and nine SSRs were tested, amplified and analysed to evaluate microsatellite instability (MSI). Mutagenic effects of cadmium on microsatellite DNA loci were assessed and no MSI was observed in the used markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号