首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
希拉穆仁草原近自然恢复状态下植被-土壤响应特征   总被引:5,自引:0,他引:5  
通过对内蒙古阴山北麓围封区域草原近自然状态下植被群落特征及其土壤颗粒物理特性的研究,探讨草地群落与土壤颗粒物理特性在自然风蚀条件下的特征。结果表明:(1)草地全覆盖时以羊草、赖草为优势种,当草地盖度下降为40%以下时以指示草地退化的冷蒿为优势种;且随着植被盖度的降低,草地植物群落生物量呈降低趋势,Shannon-Wiener指数、Simpson指数均呈现出先升高后降低的趋势;(2)草地植被覆盖度对地表土壤颗粒分形维数有显著影响(P0.05),随着盖度的降低,其地表土壤颗粒分形维数呈显著降低趋势,地表土壤颗粒粗化明显;(3)在近自然状态下,草地植被覆盖较低时,地表0—1 cm土壤颗粒粗粒化现象尤为显著,粒度累计差异达到1 mm,垂直结构上表现为由3—5 cm、1—3 cm土层至0—1 cm土层,土壤颗粒粗粒化程度加重,粗颗粒粒度累积差异分别出现在0.1、0.25、1 mm;(4)在近自然状态下,随着草地植被盖度增加,表层土壤受植物遮蔽,得到有效保护,土壤颗粒逐渐细化,容重也缓慢下降。在近自然状态下,草地及土壤环境发生有层次且多样性的变化,草地植被的斑块状变化使得希拉穆仁围封区草原在近原始状态下出现自然风蚀现象成为可能。  相似文献   

2.
内蒙古呼伦贝尔草甸草原的草地退化等级数量分析   总被引:7,自引:0,他引:7  
采用样方取样方法实地调查内蒙古呼伦贝尔草甸草原的植物群落特征,利用植被和土壤数据,应用系统聚类分析方法对其草地退化等级进行定量划分.结果表明:(1)植被指标聚类可将草地划分为3个等级,即轻度退化、中度退化和重度退化草地,而利用土壤指标聚类则划分为2个等级,其中轻度退化和中度退化草地的土壤状况相似合为一个等级,重度退化草地为另一个等级;(2)随着放牧梯度的变化,植被和土壤都发生了变化,中度退化草地植被变化大,而土壤变化不大;(3)内蒙古呼伦贝尔草甸草原为同一草地利用单元,所划分的草地退化等级系列是由放牧引起的.  相似文献   

3.
地表水热要素在青藏高原草地退化中的作用   总被引:1,自引:0,他引:1  
夏龙  宋小宁  蔡硕豪  胡容海  郭达 《生态学报》2021,41(11):4618-4631
在全球气候变暖和频繁的人类活动影响下,青藏高原草地生态系统发生了生产力下降、生物多样性减少及生态功能退化等一系列现象。与传统观测技术相比,遥感技术具有大范围、快速和连续监测等优点,因此被广泛用于区域尺度的草地植被长时间序列监测。以往对青藏高原草原植被影响因子的研究多集中在气温与降水,而相比较于气温和降水,地表温度和土壤湿度直接作用于植物的根部,对植物种子的萌芽和植株的生长也都有着重要影响,所以地表温度和土壤湿度与植被生长的关系更加紧密。基于遥感技术,利用青藏高原草地区域的MODIS和AVHRR数据,选择草地植被覆盖度作为草地退化的遥感监测指标,建立了青藏高原草地退化遥感监测和评价指标体系,并对青藏高原2001-2017年的草地退化状况进行了遥感监测和评价。同时,利用遥感数据获取青藏高原区域尺度的地表温度和温度植被干旱指数数据,用于指示地表水热状况,最后基于回归方法分析了地表水热要素在青藏高原草地退化中的作用。结果表明:从2001-2017年,青藏高原植被退化程度空间差异明显,柴达木盆地和青海湖附近退化较为严重,喜马拉雅山脉北部、昆仑山脉南部、冈底斯山脉北部交汇的地区退化也较严重。在2001-2017年间,青藏高原草地未退化面积从50.60%上升到59.00%,说明青藏高原草地整体上在朝着改善的方向发展。2001-2017年内,青藏高原草地整体上大部分时间处于轻度退化状态,但是2001年和2015年这两个年份青藏高原草地退化整体上达到中等退化水平。通过回归分析发现,土壤湿度主导的对青藏高原草地的影响面积达到14.04%。地表温度主导的影响面积达到草地总面积的约36.61%。但地表温度与植被之间相互影响,且主要呈现负相关关系。其中,在温性草甸地区,当植被覆盖度较低时,地表温度正向影响植被生长。  相似文献   

4.
草原退化诱发的沙尘暴严重危害了人们的生活。但在草原地区,那些被人恨之入骨的沙尘却是植被赖以生存的土壤物质。这些土壤里含有大量的养分、水分、袍子,甚至植物的种子,它们都是草原的宝贝,一旦被吹走了,便不可能再回到草原。  相似文献   

5.
内蒙古锡林河流域植被退化的格局及驱动力分析   总被引:5,自引:2,他引:3       下载免费PDF全文
草地退化是中国北方草原面临的主要生态问题。该文以1984和2004年草原植被群落调查数据为主要依据, 以优势种、建群种和群落类型及其比例的变化作为主要指标, 并与20世纪80年代的植被类型图比较, 分析了内蒙古锡林河流域草地的退化趋势及其空间分布。根据流域内草地退化的实际情况, 将其分为未退化、轻度退化、中度退化、重度退化和极度退化5种退化类型。另外, 根据近20年前后草地植被变化的实际情况, 又划分了恢复和盐化两个类型。结果表明: 草地退化呈现明显的空间分布, 以锡林河为标志, 总体上从上游到下游退化程度逐渐加剧, 表现为浑善达克沙地进入锡林河的部分及沿河地区为重度退化, 锡林浩特市以北的区域, 尤其是流域的西北部, 已经达到了极度退化; 流域中部的白音锡勒牧场主要是中度退化; 轻度退化则均匀地分布于整个流域; 未退化类型多分布于锡林河的西部, 锡林河中下游地区由于农田退耕、草地围封出现了一定程度的恢复; 锡林浩特市以北沿锡林河植被的盐化程度较重。不同的植被类型退化程度也不同, 沙地灌丛植被轻度退化比例较高, 占植被的43%; 羊茅(Festuca ovina)草原和榆树(Ulmus pumila)疏林沙地中度退化草地的比重较高, 超过50%; 贝加尔针茅(Stipa baicalensis)草原和无芒雀麦(Bromus inermis)杂类草草甸的重度退化面积达50%以上; 极度退化比例较大的有克氏针茅(S. krylovii)草原和小叶锦鸡儿(Caragana microphylla)灌丛化草原。对于羊草(Leymus chinensis)草原, 以轻度和中度退化为主。导致不同区域和不同植被类型草地退化的原因也不尽相同, 从近20年的时间尺度来看, 过度放牧、不合理的居民点布局, 以及道路等是草地退化的主要人为驱动因子。研究结果还显示, 仅以生物量的变化来划分草地退化存在一定的局限性, 因此, 该文以群落优势种和建群种来表征草地的退化类型更具有客观性和实际的应用价值。  相似文献   

6.
陕西省植被退化及其驱动因素分析   总被引:2,自引:0,他引:2  
基于2000—2013年250 m分辨率MODIS NDVI数据,运用混合像元分解模型计算植被覆盖度,评价陕西植被退化情况,分析引起植被退化的主要因素,为进一步开展生态、城镇建设规划提供依据。结果表明:1)陕西省植被退化区域主要分布在以西安市为主的关中城市群和榆林市以北的沙漠地带。植被退化面积最多的市是西安市,其次是榆林市,最少的是安康市。2)植被变化以改善和变化不明显为主,分别占土地总面积的48.03%和49.10%;植被退化面积较少,占土地总面积2.87%,其中轻度退化、中度退化和重度退化的面积分别占总土地面积的1.39%、0.56%和0.92%。3)植被退化主要发生在农田,占总退化面积的54.36%。4)植被退化面积与新增建成区面积的关系达到极显著程度,说明随着城镇化的不断发展,城镇用地不断扩张,大量农田、森林、草地等植被覆盖度高的土地被占用,直接导致植被退化,因此在城镇规划中应重视绿地园林建设;榆林市以北的沙漠地带局部区域植被仍在退化,应继续保护治沙成果和治理裸露沙地。  相似文献   

7.
利用生态系统分类及生态参量数据产品,运用植被覆盖度年际变异系数、趋势斜率和退化指数等草地覆盖度变化状况评价指标,对陕西北部重大生态建设工程实施关键年份(2000-2010年)内各类型草地植被覆盖度的演替状况进行研究。结果显示:(1)延安市和榆林市的黄土沟壑区草地生态系统面积明显增加,年均植被覆盖度由2000年的27.94%增长到2010年的40.50%,草地覆盖度整体由低覆盖向中覆盖等级转变,其中温带草原和温性草丛覆盖度呈明显上升趋势。(2)陕西北部大部分草地覆盖度波动变化明显,延河以北温带草原稳定性低,延河以南温性草丛稳定性较高、波动变化较小;93.98%的草地区域覆盖度呈上升趋势,其中极显著上升区域主要分布在黄土沟壑区;3.23%的降低区域集中于榆林市西北部的温带荒漠草原分布区。(3)11年间,陕西北部退化草地得到改善恢复的面积由2000-2005年期间的9594.44 km2增加到2005-2010年期间的26 544.39 km2,远大于退化区域,草地极重度退化程度得到扭转。本研究表明陕西北部不同类型草地覆盖度均不同程度得到了缓解和改善。  相似文献   

8.
覆盖作物指的是在农业生产间隙种植,使土壤在时间或空间上减少或避免裸露的一种作物。其能使农田土壤免受风蚀、水蚀和人为扰动的影响,被认为是一种新型的保护性耕作方式。本文简要介绍了农田覆盖作物的种植管理情况,包括种植品种、耕作模式和绿肥作物的灭生还田方式等,可为推广覆盖作物在农田休闲期的高效大面积种植提供参考。基于国内外研究综述了绿肥种植对经济作物、土壤质量、杂草抑制、温室气体排放和土壤微生物等的影响及研究进展,阐明了覆盖作物对农田生态系统的诸多益处。尽管覆盖作物存在局限性,例如短期收益不明显、管理措施不当会造成作物减产等,但其在改善土壤质量、实现农业可持续发展方面仍然具有重要的应用价值。  相似文献   

9.
1982~2003年东北地区植被覆盖变化特征分析   总被引:7,自引:3,他引:4  
利用1982~2003年GIMMS-NDVI数据集和GIS技术,结合多种统计分析方法,定量分析了东北地区植被覆盖时空变化规律。结果显示:(1)1982~2003年东北地区森林、草地和农田植被年内变化曲线均为单峰型,峰值都出现在夏季,森林植被年内NDVI变化曲线峰值最高,农田次之,草地最低。(2)22年期间,森林植被覆盖呈下降趋势;草地和农田植被覆盖总体亦呈下降趋势,但西辽河平原草地和松嫩平原农田植被覆盖呈上升趋势;相同植被类型比较,长白山东北部林地、西辽河平原草地、松嫩平原农田植被覆盖均比较稳定。(3)1982~2003年,东北地区植被覆盖总体呈缓慢下降趋势,其中1982~1992年,东北地区植被覆盖呈增加趋势,植被覆盖增加的面积为545 435 km2,占东北地区总面积的43.91%;植被覆盖减少面积为96 491 km2,占总面积的7.77%;1993~2003年,东北地区植被覆盖呈减少趋势,植被覆盖减少的面积为626 839 km2,占东北地区总面积的50.45%,植被覆盖增加的面积较少,仅为27 025 km2,占总面积的2.18%,且呈零星分布。研究表明,人类活动和自然因素的变化是东北地区植被覆盖下降的主要原因。  相似文献   

10.
当前三江源区高寒草甸在气候变化和人类活动作用下已经大面积退化。由于该区域地势复杂, 除滩地之外, 不同坡度的退化草地治理技术研究亟待加强。针对退化草地恢复已有大量研究, 然而对草地干扰相对较低的无纺布覆盖技术研究薄弱。基于以上, 在三江源区不同坡度的高寒退化草甸通过铺设无纺布, 来探讨无纺布对不同坡度退化草地植被及土壤理化性质的影响。结果发现: 缓坡地地上生物量、植被高度、土壤水分显著低于陡坡地; 无纺布覆盖能显著提升植被地上生物量、 盖度、 物种分盖度和、含水量以及碳、氮积累; 且对缓坡地植被地上生物量、 物种分盖度和及土壤水分的促进幅度更大。因此无纺布覆盖对植被及土壤提升效应说明这是一项适宜于高寒退化草甸的恢复技术, 特别对水热条件相对较差的缓坡退化草地治理中, 此项技术适宜推广。  相似文献   

11.
C. Eraud  J-M. Boutin 《Bird Study》2013,60(3):287-296
Capsule Small field size and the maintenance of set-aside and lucerne are important to ensure high breeding pair densities and productivity.

Aims To investigate the effects of crop types and their attributes on density and productivity of breeding Skylark.

Methods At each of four selected study sites in western France, territory density, vegetation height, vegetation cover and field size was estimated by field and attempts were made to find nests. Crop types included winter and spring cereals, oilseed rape, sunflower, maize, grass, lucerne, set-aside, and bare ground.

Results About 80% of Skylark territories included more than one crop type. Birds preferred small fields and territory density decreased with increasing field size. Density was highest in crops with low vegetation height and cover. Set-aside, lucerne and grass supported highest territory density. Fledging productivity was highest in set-aside and lucerne, and was zero on bare ground. Skylark density decreased throughout the breeding season (-26% in 1999 and -29% in 2000), suggesting an instability in territory distribution or activity in intensive farmland.

Conclusions Farming systems that decrease field size and increase set-aside and lucerne instead of oilseed rape, maize and sunflower will benefit Skylark and other declining farmland species.  相似文献   

12.
We used radiotelemetry to investigate resting sites habitat selection by introduced eastern cottontail (Sylvilagus floridanus) and native European hare (Lepus europaeus) under sympatric conditions. We tracked 24 hares and 34 cottontails in a protected area of northwestern Italy. Hares were found in different sites every week, while cottontails used the same site for two weeks, and occasionally for longer. It is supposed that this periodic nest switching reduces the risk of predation and parasitism. Hares and cottontails forms were located in different habitats and characterized by dense vegetation cover near the ground. This cover increased from winter to summer in both species, while in autumn it continued to increase in cottontails only, and decreased in hares. Cottontails selected shrubby habitats near the river, and avoided crop fields in all seasons. Hares were more adaptive in their search, using high herbs and shrubs all year round, wheat fields in spring, maize in spring and summer, and stubbles in winter. Arguably, partial niche differentiation is necessary to allow the coexistence of similar species. In our study area, hares and cottontails differentiated in the use of resting sites habitats, presumably so as not to compete in this part of their ecological niche.  相似文献   

13.
Landscape fire (at the scale of square kilometres or more) is relatively rare in the alpine and subalpine environments of Australia. In early 1998, a major fire (the ‘Caledonia Fire’), burnt approximately 35 000 ha, of which approximately 3000 hectares was subalpine heathland, grassland and wetland within the Victorian Alpine National Park. This fire was one of only three landscape‐scale fires that have occurred anywhere in the treeless vegetation of the Victorian Alps in the past 100 years, the others being in 1939 and 1985. Monitoring of regeneration in subalpine vegetation commenced 3 weeks postfire. Sites were established in burnt grassland at Holmes Plain (1400 m a.s.l.) and burnt grassland and heathland at Wellington Plain (1480 m a.s.l.), and in unburnt grassland at both sites. In burnt grassland and heathland, the fire consumed much of the vegetation, leaving extensive areas of bare ground. The cover of dense vegetation declined from > 70% prefire, to approximately 15% immediately postfire. Bare ground at the Holmes and Wellington Plains sites ranged from 70% to 85% immediately postfire. By May 2000, approximately 2.5 years postfire, dense vegetation cover in grassland had increased to approximately 20%, and bare ground had decreased to an average of approximately 30%. In unburnt grassland, dense vegetation cover was generally > 95%, and the amount of bare ground less than 5%. The tussock‐forming snow grasses resprouted vigorously following fire, and had flowered prolifically after 1 year. In heathland, most of the shrubs were incinerated, leaving close to 100% bare soil. Since then, a number of grasses and some dominant shrubs have resprouted vigorously, with some seedling regeneration. By May 2000, in heathland, bare soil was still > 50% and dense vegetation < 20%. Such ground cover conditions during this early postfire period were well below prefire levels, and well below the levels necessary to protect alpine soils from erosion. The Caledonia Fire has provided a rare opportunity to study ecological processes associated with postfire regeneration in treeless subalpine landscapes.  相似文献   

14.
绿洲农业不同种植方式防止土壤风蚀和保持土壤水分的比较   总被引:13,自引:1,他引:12  
2001年~2002年,在河西走廊中断黑河中游,研究了不同方式对春季就地起沙、风速梯度、水分保持等方面的效应.结果表明,冬灌免耕、粮草间作和早春覆膜措施都不同程度地遏制了就地起沙,减少了土壤风蚀.早春覆膜在减少土壤风蚀量的同时,提高了土壤蓄水量,比春耕裸露农田蓄水量增加了35.6%.目前.春耕播种裸地是形成沙尘暴和浮尘的粉尘含量的主要来源之一,黑河中、上游农田耕地每年产生的粉尘输移量达4.8×10^6~6.0×10^6t,高于同区域沙漠粉尘输移量.河西走廊粉尘输移量1hm^2农田相当于1.5hm^2沙漠.  相似文献   

15.
The construction of ski-pistes can cause serious damage to all the components of an ecosystem and may therefore be considered as one of the main causes of human-driven environmental changes in mountain habitats. This study was aimed at assessing the responses of different ground dwelling arthropod assemblages (i.e. ground beetles, spiders and grasshoppers) to ski-piste restoration through hydroseeding with commercial seed mixtures. The soil, vegetation and arthropods of restored and un-restored ski-pistes and the adjacent grassland have been sampled at two high altitude sites in the north-western Italian Alps. The ski-piste soil was characterized by a higher skeletal content and, consequently, a lower amount of fine earth and organic matter than that of the undisturbed adjacent grassland. The plant cover of the restored ski-pistes was very low above 2,500 m a.s.l.; the vegetation cover below this threshold was higher in the study area, mainly due to the seeded species. The unrestored ski-pistes showed very large proportions of bare ground. The responses of the three ground-dwelling arthropod groups to vegetation conditions were different. GLMMs and IndVal analyses showed that all three groups avoided the unrestored ski-pistes plots, which were characterized by a very scarce vegetation cover, irrespective of the altitude. The low altitude plots of the restored ski-pistes, which were characterized by a high vegetation cover, had a significantly larger number of grasshoppers on the ski-pistes than on the adjacent grassland plots. Moreover, these restored ski-piste plots were used in equal proportion to the adjacent grassland plots by ground beetles but avoided by spiders. When ski-pistes become sufficiently revegetated by hydroseeded plants, they are colonized by grasshoppers and, to a lesser extent, by ground-beetles. Spiders, instead, do not colonize the pistes, thus demonstrating that they are the most sensitive arthropods and may therefore represent the best indicators of human-driven environmental changes in high altitude alpine habitats.  相似文献   

16.
The post‐fledging period is a critical life stage for young grassland birds. Habitat selection by recently fledged birds may differ from that of adults and may change as juveniles transition from the care and protection of parents to independence. To describe patterns of habitat selection during these important life stages, we studied habitat use by juvenile Grasshopper Sparrows (Ammodramus savannarum) in a Conservation Reserve Program grassland in Maryland. We used radio‐telemetry to track daily movement patterns of two age classes of Grasshopper Sparrows during the post‐fledging period. Sparrows were classified as either dependent (<32‐d‐old) or independent (≥32‐d‐old). We characterized the vegetation at 780 vegetation plots (390 plots where birds were located and 390 paired random plots). Microhabitats where dependent birds were found had significantly more bare ground, litter, and plant species richness than paired random plots. In addition, dependent birds were found in plots with less bare ground, more warm‐season grass cover, more total vegetation cover, and more forb cover than plots used by independent birds. Plots where independent birds were located also had significantly more bare ground than random plots. Dependent birds are less able to escape from predators because their flight feathers are not fully grown so they may benefit from remaining in areas of greater vegetation cover. However, juveniles transitioning from dependence to independence must forage on their own, possibly explaining their increased use of more open areas where foraging may be easier. To properly manage habitat for grassland birds, management strategies must consider the changing needs of birds during different stages of development. Our results highlight the importance of diverse grassland ecosystems for juvenile grassland birds during the transition to independence.  相似文献   

17.
Multivariate techniques were used to compare and contrast the effects of land cover and farming practice on ground beetle and spider assemblages of Scottish farmland. For both ground beetles and spiders, the ordination and fuzzy clustering of sites were related to land cover rather than geographical location or year of sampling. The same four types of land cover group were identified: that is, heather moorland, semi-natural grassland, intensive grassland and arable land. The robustness of these land cover groups was tested using previously unsampled sites and it was found that 79 and 86% of sites, for ground beetle and spider assemblages respectively, were allocated to the land cover group predicted from their actual land cover. Furthermore, procrustes rotational analysis found a strong relationship between ground beetle and spider assemblages in intensively managed sites, suggesting that the assemblage structure of one group could be used to predict that of the other. The observed relationship between spider and ground beetle assemblages does not necessarily indicate that both groups were responding to agricultural practices in the same way. Indeed, the highest number of beetle species occurred in intensively managed grassland and arable sites while the highest number of spider species occurred in semi-natural grassland and heather sites. When conducting ecological assessments, one might wish to collect information on a wide range of ecologically different taxa; however, financial constraints make this unfeasible. From the results it could be concluded that spiders should be chosen in preference to ground beetles when seeking to make predictions on how farming practices influence invertebrates. However, such a conclusion would be premature since not only were spiders more numerous in the traps, but they were also more time consuming to process. In addition, the strong relationship found between the spider and ground beetle assemblages further justifies carabids as a target group when monitoring the influence of farming practices on biodiversity.  相似文献   

18.
Capsule?House Sparrow (Passer domesticus) populations in south Swedish farmland are not affected by supplemental winter feeding, irrespective of agricultural landscape type or presence of animal husbandry, although winter populations declined more in mixed farmland and when farms contained animal husbandry.

Aims?To investigate whether food limitation of House Sparrow population size during the winter varied spatially in relation to agricultural landscape intensification and farm management.

Methods?We experimentally increased the winter food supply for populations on farmsteads in replicated landscapes that differed in agricultural intensification (open plains versus mixed farming) and/or farm management (crop farming versus animal husbandry), and estimated possible differences in effects on winter population change.

Results?We found no effect of supplementary winter feeding on changes in House Sparrow population sizes over the winter, irrespective of agricultural landscape type or presence of animal husbandry at the farm. However, we found a significantly larger winter population decline in mixed farmland and when farms contained animal husbandry.

Conclusions?The results suggest that House Sparrow populations in south Swedish farmland are not primarily limited by winter food availability. Alternatively, supplemental winter feeding may augment interspecific competition or attracts predators, offsetting any positive effect on population change. However, the stronger population decline in landscapes in which more breeding resources may be available (animal husbandry farms, mixed farmland), suggests stronger intraspecific competition during the winter in line with the resource separation hypothesis.  相似文献   

19.
The maintenance of fallows has been shown to prevent the loss of farmland biodiversity caused by agricultural intensification. These are mainly introduced as part of both obligatory and voluntary set-aside schemes. However, the obligatory set-aside has recently been abolished by the Common Agricultural Policy Health Check. In this study, we examine the role of fallow in fine-grained habitat use by a threatened farmland bird (Lesser Kestrel) during summer in northwestern Spain. To analyze Lesser Kestrel occurrence, we used generalized linear models, a theoretic-information approach and a hierarchical partitioning analysis. The best AIC-based models explaining occurrence of Lesser Kestrels showed that fallow was the more important habitat type followed, to a lesser extent, by dry cereal stubble and field margin. In contrast, irrigated crops negatively influenced occurrence. Heterogeneity of crop mosaic was not important in explaining occurrence of Lesser Kestrel. Fallows, like dry cereal stubbles and field margins, seem to be suitable for foraging given the abundance of high food resources and their availability due to shorter vegetation cover. The abolition of the obligatory set-aside could reduce the total surface of fallow land (approximately 40.9%), likely affecting habitat use by Lesser Kestrel through an increase of other non-preferred crops (e.g., irrigated crops) or by decreasing food resources. Agri-environment schemes focusing on the maintenance of low-intensive farming systems with a mosaic of crops and semi-natural habitats interspersed should be promoted in premigratory areas to maintain Lesser Kestrel.  相似文献   

20.
We studied the spatial patterns and temporal dynamics of vegetation structural responses to precipitation variation in grassland, transitional, and desertified‐shrubland ecosystems in an 800 km2 region of Northern Chihuahua, USA. Airborne high‐fidelity imaging spectroscopy data collected from 1997 to 2001 provided spatially detailed measurements of photosynthetic and senescent canopy cover and bare soil extent. The observations were made following wintertime and summer monsoonal rains, which varied in magnitude by >300% over the study period, allowing an assessment of ecosystem responses to climate variation in the context of desertification. Desertification caused a persistent increase in both photosynthetic vegetation (PV) and bare soil cover, and a lasting decrease in nonphotosynthetic vegetation (NPV). We did not observe a change in the spatial variability of PV cover, but its temporal variation decreased substantially. In contrast, desertification caused the spatial variability of NPV to increase markedly, while its temporal variation did not change. Both the spatial and temporal variation of exposed bare surfaces decreased with desertification. Desertification appeared to be linked to a shift in seasonal precipitation use by vegetation from mainly summer to winter inputs, resulting in an apparent decoupling of vegetation responses to inter‐annual monsoonal variation. Higher winter rainfall led to decreased springtime spatial variability in the PV cover of desertified areas. Higher summer rainfall resulted in decreased PV cover variation in grassland, transition and desertified‐shrubland regions. The effects of desertification on NPV dynamics were more than three times greater than on PV or bare soil dynamics. Using remotely sensed PV and NPV as proxies for net primary production (NPP) and litter dynamics, respectively, we estimated that desertification decreases the temporal variability of NPP and increases spatial variation of litter production and loss. Quantitative studies of surface biological materials and ecosystem processes can now be measured with high ‘structural’ detail using imaging spectroscopy and shortwave‐infrared spectral mixture analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号