首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.  相似文献   

2.
Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability.  相似文献   

3.
Ultraviolet light (UV light) induces helix distorting DNA lesions that pose a block to replicative DNA polymerases. Recovery from this replication arrest is reportedly impaired in nucleotide excision repair (NER)-deficient xeroderma pigmentosum (XP) fibroblasts and primary fibroblasts lacking functional p53. These independent observations suggested that the involvement of p53 in the recovery from UV-induced replication arrest was related to its role in regulating the global genomic subpathway of NER (GG-NER). Using primary human fibroblasts, we confirm that the recovery from UV-induced replication arrest is impaired in cells lacking functional p53 and in primary XP fibroblasts derived from complementation groups A or C (XP-A and XP-C) that are defective in GG-NER. Surprisingly, DNA synthesis recovered normally in GG-NER-deficient XP complementation group E (XP-E) cells that carry mutations in the p53 regulated DNA repair gene DDB2 and are specifically defective in the repair of cyclobutane pyrimidine dimers (CPD) but not pyrimidine (6-4) pyrimidone photoproducts. Disruption of p53 in these XP-E fibroblasts prevented the recovery from UV-induced replication arrest. Therefore, the roles of p53 and GG-NER in the recovery from UV-induced replication are separable and DDB2-independent. These results further indicate that primary human fibroblasts expressing functional p53 efficiently replicate DNA containing CPD whereas p53-deficient cells do not, consistent with a role for p53 in permitting translesion DNA synthesis of these DNA lesions.  相似文献   

4.
Two monoclonal antibodies against the p53 protein, PAb 122 and 200-47, were microinjected into mammalian cells as a probe to determine the role of the p53 protein in cell proliferation. PAb 122 recognizes the p53 proteins of mouse and human cells but not of hamster cells, whereas 200-47 recognizes the p53 proteins of mouse and hamster cells but not of human cells. The ability of these antibodies to inhibit serum-stimulated DNA synthesis of cells in culture correlates with their ability to recognize the species-specific antigenic determinants. More important, however, is the observation that microinjected PAb 122 inhibits the transition of Swiss 3T3 cells from G0 to S phase, but has no effect on the progression of these cells from mitosis to the S phase.  相似文献   

5.
6.
Zander L  Bemark M 《DNA Repair》2004,3(7):743-752
The catalytic subunit of polymerase zeta is encoded from the Rev3 gene. The enzyme is conserved through eukaryotic evolution and its main function appears to be translesion synthesis (TLS) over damaged bases that stall DNA replication. In non-vertebrate cells, inactivation of polymerase zeta results in a moderate hypersensitivity to DNA damage but no proliferative defect in the absence of exogenous damage. Mouse embryos that lack Rev3 however have a severe growth defect and are aborted at midgestation. This has suggested that polymerase zeta may be involved in vital processes in mammalian cells. Here we describe the establishment of immortalized mouse fibroblast cell lines that lack a functional Rev3 gene. These were established from homozygously Rev3-targeted mouse embryos that were also heterozygously targeted at the p53 locus, but the cell lines lost the wild type p53 allele during transformation. Cell lines in which the Rev3 gene is targeted on both alleles grow more slowly than control lines and the deficiency is also associated with an increased frequency of cells at the G2/M phase of the cell cycle and augmented apoptosis. Targeted cells are hypersensitive to UV irradiation and cisplatin treatment and arrest at the S or G2/M phase of the cell cycle if exposed to these treatments. Thus, although vital for murine embryonic development, polymerase zeta activity is not essential for continuous proliferation of transformed mammalian cells that lack p53. It does, however, appear to play an important role in allowing mammalian cells to tolerate DNA damage.  相似文献   

7.
8.
Plasmids containing DNA sequences coding for p53 were microinjected into quiescent Swiss 3T3 cells. Three constructs were used, carrying either the whole gene sequence, a full-length cDNA, or a hybrid between the gene and the cDNA. All of them stimulated DNA synthesis when cells were incubated with platelet-poor plasma (PPP) following injection. The p53 gene stimulated DNA synthesis to a lesser extent, also in the absence of PPP. Several negative results were obtained with different plasmids, including deletion mutants in the p53 coding region. However, a deletion mutant in which the p53 reading frame ended in the middle of the coding part of the p53 gene still stimulated DNA synthesis in co-operation with PPP. The stimulation of DNA synthesis induced by p53 cDNA was more synchronous and more limited than that induced by serum. The present data suggest that p53 may act as a competence factor in cell cycle progression.  相似文献   

9.
Human fibroblasts in culture obtain deoxynucleotides by de novo ribonucleotide reduction or by salvage of deoxynucleosides. In cycling cells the de novo pathway dominates, but in quiescent cells the salvage pathway becomes important. Two forms of active mammalian ribonucleotide reductases are known. Each form contains the catalytic R1 protein, but the two differ with respect to the second protein (R2 or p53R2). R2 is cell cycle-regulated, degraded during mitosis, and absent from quiescent cells. The recently discovered p53-inducible p53R2 was proposed to be linked to DNA repair processes. The protein is not cell cycle-regulated and can provide deoxynucleotides to quiescent mouse fibroblasts. Here we investigate the in situ activities of the R1-p53R2 complex and two other enzymes of the de novo pathway, dCMP deaminase and thymidylate synthase, in confluent quiescent serum-starved human fibroblasts in experiments with [5-(3)H]cytidine, [6-(3)H]deoxycytidine, and [C(3)H(3)]thymidine. These cells had increased their content of p53R2 2-fold and lacked R2. From isotope incorporation, we conclude that they have a complete de novo pathway for deoxynucleotide synthesis, including thymidylate synthesis. During quiescence, incorporation of deoxynucleotides into DNA was very low. Deoxynucleotides were instead degraded to deoxynucleosides and exported into the medium as deoxycytidine, deoxyuridine, and thymidine. The rate of export was surprisingly high, 25% of that in cycling cells. Total ribonucleotide reduction in quiescent cells amounted to only 2-3% of cycling cells. We suggest that in quiescent cells an important function of p53R2 is to provide deoxynucleotides for mitochondrial DNA replication.  相似文献   

10.
In response to DNA damage, mammalian cells adopt checkpoint regulation, by phosphorylation and stabilization of p53, to delay cell cycle progression. However, most cancer cells that lack functional p53 retain an unknown checkpoint mechanism(s) by which cells are arrested at the G(2)/M phase. Here we demonstrate that a human homolog of Cds1/Rad53 kinase (hCds1) is rapidly phosphorylated and activated in response to DNA damage not only in normal cells but in cancer cells lacking functional p53. A survey of various cancer cell lines revealed that the expression level of hCds1 mRNA is inversely related to the presence of functional p53. In addition, transfection of normal human fibroblasts with SV40 T antigen or human papilloma viruses E6 or E7 causes a marked induction of hCds1 mRNA, and the introduction of functional p53 into SV40 T antigen- and E6-, but not E7-, transfected cells decreases the hCds1 level, suggesting that p53 negatively regulates the expression of hCds1. In cells without functional ataxia telangiectasia mutated (ATM) protein, phosphorylation and activation of hCds1 were observed in response to DNA damage induced by UV but not by ionizing irradiation. These results suggest that hCds1 is activated through an ATM-dependent as well as -independent pathway and that it may complement the function of p53 in DNA damage checkpoints in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号