首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.  相似文献   

2.
Abstract

In rat HTC hepatoma cells overexpressing human insulin receptors, insulin stimulated glycogen synthesis by 55–70%. To study postreceptor signaling events leading to insulin-stimulated glycogen synthesis in these cells, we have employed pathway-specific chemical inhibitors such as LY294002, rapamycin and PD98059 to inhibit phosphatidylinositol-3-kinase (PI3K), p70 ribosomal S6 kinase and mitogen-activated protein kinase (MAPK) kinase/MAPK, respectively. LY294002 (50 μM) completely abolished insulin-stimulated glycogen synthesis whereas rapamycin (2–20 nM) partially inhibited it. Neither LY294002 nor rapamycin significantly affected the basal glycogen synthesis. However, PD98059 (100 μM) significantly inhibited the basal glycogen synthesis without affecting insulin-stimulated glycogen synthesis. In these cells, insulin at 100 nM decreased glycogen synthase kinase 3α (GSK3α) activity by 30–35%. LY294002, but neither rapamycin nor PD98059, abolished insulin-induced inactivation of GSK3α. These data suggest that insulin-stimulated glycogen synthesis in rat HTC hepatoma cells is mediated mainly by PI3K-dependent mechanism. In these cells, inactivation of GSK3α, downstream of PI3K, may play a role in insulin-stimulated glycogen synthesis.  相似文献   

3.
The role of phosphatidylinositol (PI) 3-kinase in specific aspects of insulin signaling was explored in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity by LY294002 or wortmannin significantly enhanced basal and insulin-stimulated GTPase-activating protein (GAP) activity in 3T3-L1 adipocytes. Furthermore, removal of the inhibitory influence of PI 3-kinase on GAP resulted in dose-dependent decreases in the ability of insulin to stimulate p21ras. This effect was specific to adipocytes, as inhibition of PI 3-kinase did not influence GAP in either 3T3-L1 fibroblasts, Rat-1 fibroblasts, or CHO cells. Immunodepletion of either of the two subunits of the PI 3-kinase (p85 or p110) yielded similar activation of GAP, suggesting that catalytic activity of p110 plays an important role in controlling GAP activity in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity in 3T3-L1 adipocytes resulted in abrogation of insulin-stimulated glucose uptake and thymidine incorporation. In contrast, effects of insulin on glycogen synthase and mitogen-activated protein kinase activity were inhibited only at higher concentrations of LY294002. It appears that in adipocytes, P1 3-kinase prevents activation of GAP. Inhibition of PI 3-kinase activity or immunodepletion of either one of its subunits results in activation of GAP and decreases in GTP loading of p21ras.  相似文献   

4.
Amino acids have emerged as potent modulators of the mTOR/p70 S6 kinase pathway. The involvement of this pathway in the regulation of insulin-stimulated glucose transport was investigated in the present study. Acute exposure (1 h) to a balanced mixture of amino acids reduced insulin-stimulated glucose transport by as much as 55% in L6 muscle cells. The effect of amino acids was fully prevented by the specific mTOR inhibitor rapamycin. Time course analysis of insulin receptor substrate 1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity revealed that incubation with amino acids speeds up its time-dependent deactivation, leading to a dramatic suppression (-70%) of its activity after 30 min of insulin stimulation as compared with its maximal activation (5 min of stimulation). This accelerated deactivation of PI 3-kinase activity in amino acid-treated cells was associated with a concomitant and sustained increase in the phosphorylation of p70 S6 kinase. In marked contrast, inhibition of mTOR by rapamycin maintained PI 3-kinase maximally activated for up to 30 min. The marked inhibition of insulin-mediated PI 3-kinase activity by amino acids was linked to a rapamycin-sensitive increase in serine/threonine phosphorylation of IRS-1 and a decreased binding of the p85 subunit of PI 3-kinase to IRS-1. Furthermore, amino acids were required for the degradation of IRS-1 during long term insulin treatment. These results identify the mTOR/p70 S6 kinase signaling pathway as a novel modulator of insulin-stimulated glucose transport in skeletal muscle cells.  相似文献   

5.
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.  相似文献   

6.
Triacylglycerol synthesis was studied in hepatocytes isolated from fasted/refed rats by EDTA perfusion. Insulin induced a 1.5-fold increase in glucose incorporation into triacylglycerol. Insulin-stimulated triacylglycerol synthesis and insulin-stimulated protein kinase B/Akt activity were inhibited by the phosphatidylinositol 3-kinase inhibitors wortmannin and LY 294002, and the mitogen-activated protein kinase kinase inhibitor PD 98059. Inhibition of p70 ribosomal protein-S6 kinase with rapamycin was without effect. Insulin-stimulated pyruvate dehydrogenase activity was abolished by phosphatidylinositol 3-kinase inhibitors. No effect of insulin on acetyl CoA carboxylase activity was observed.  相似文献   

7.
Although a number of studies and approaches have indicated that activation of the Ser/Thr kinase called Akt/protein kinase B is critical for the insulin-stimulated increase of glucose uptake in adipocytes, other studies have indicated that this enzyme may play an ancillary role. For example, a recent study indicated that neomycin would allow insulin-stimulated Glut4 translocation and glucose transport in the presence of the phosphatidylinositol (PI) 3-kinase inhibitor, wortmannin, a known inhibitor of Akt activation (James, D. J., Salaun, C., Brandie, F. M., Connell, J. M. C., and Chamberlain, L. H. (2004) J. Biol. Chem. 279, 20567-20570). To better understand this observation, we examined a number of downstream targets of Akt. As previously reported, treatment of 3T3-L1 adipocytes with neomycin prevented the wortmannin inhibition of insulin-stimulated glucose transport. However, in the presence of neomycin, wortmannin did not inhibit the insulin-stimulated phosphorylation of several downstream targets of Akt including a proline-rich Akt substrate of 40 kDa, ribosomal protein S6, and glycogen synthase kinase-3. In addition, neomycin did not prevent the ability of a structurally unrelated PI 3-kinase inhibitor, LY294002, to inhibit the insulin-stimulated activation of glucose uptake. Moreover, neomycin reversed the inhibitory effect of wortmannin but not LY294002 on insulin stimulation of Akt kinase activity. Finally, neomycin was found to inactivate in vitro the PI 3-kinase inhibitory actions of wortmannin but not LY294002. These results indicate that the effects of neomycin in adipocytes are not mediated via its ability to sequester phosphatidylinositol 4,5-bisphosphate but are instead caused by the ability of neomycin to inactivate wortmannin.  相似文献   

8.
Insulin rapidly stimulates protein synthesis in a wide variety of tissues. This stimulation is associated with phosphorylation of several translational initiation and elongation factors, but little is known about the signaling pathways to these events. To study these pathways, we have used a myeloid progenitor cell line (32D) which is dependent on interleukin 3 but insensitive to insulin because of the very low levels of insulin receptor (IR) and the complete lack of insulin receptor substrate (IRS)-signaling proteins (IRS-1 and IRS-2). Expression of more IR permits partial stimulation of mitogen-activated protein kinase by insulin, and expression of IRS-1 alone mediates insulin stimulation of the 70-kDa S6 kinase (pp70S6K) by the endogenous IR. However, expression of both IR and IRS-1 is required for stimulation of protein synthesis. Moreover, this effect requires activation of phosphatidylinositol 3-kinase (PI3K), as determined by wortmannin inhibition and the use of an IRS-1 variant lacking all Tyr residues except those which activate PI3K. Stimulation of general protein synthesis does not involve activation by IRS-1 of GRB-2-SOS-p21ras or SH-PTP2, since IRS-1 variants lacking the SH2-binding Tyr residues for these proteins are fully active. Nor does it involve pp70S6K, since rapamycin, while strongly inhibiting the synthesis of a small subset of growth-regulated proteins, only slightly inhibits total protein synthesis. Recruitment of mRNAs to the ribosome is enhanced by phosphorylation of eIF4E, the cap-binding protein, and PHAS-I, a protein that specifically binds eIF4E. The behavior of cell lines containing IRS-1 variants and inhibition by wortmannin and rapamycin indicate that the phosphorylation of both proteins requires IRS-1-mediated stimulation of PI3K and pp70S6K but not mitogen-activated protein kinase or SH-PTP2.  相似文献   

9.
Phosphatidylinositol (PI) 3-kinase plays an important role in various insulin-stimulated biological responses including glucose transport, glycogen synthesis, and protein synthesis. However, the molecular link between PI 3-kinase and these biological responses is still unclear. We have investigated whether targeting of the catalytic p110 subunit of PI 3-kinase to cellular membranes is sufficient and necessary to induce PI 3-kinase dependent signaling responses, characteristic of insulin action. We overexpressed Myc-tagged, membrane-targeted p110 (p110(CAAX)), and wild-type p110 (p110(WT)) in 3T3-L1 adipocytes by adenovirus-mediated gene transfer. Overexpressed p110(CAAX) exhibited approximately 2-fold increase in basal kinase activity in p110 immunoprecipitates, that further increased to approximately 4-fold with insulin. Even at this submaximal PI 3-kinase activity, p110(CAAX) fully stimulated p70 S6 kinase, Akt, 2-deoxyglucose uptake, and Ras, whereas, p110(WT) had little or no effect on these downstream effects. Interestingly p110(CAAX) did not activate MAP kinase, despite its stimulation of p21(ras). Surprisingly, p110(CAAX) did not increase basal glycogen synthase activity, and inhibited insulin stimulated activity, indicative of cellular resistance to this action of insulin. p110(CAAX) also inhibited insulin stimulated, but not platelet-derived growth factor-stimulated mitogen-activated protein kinase phosphorylation, demonstrating that the p110(CAAX) induced inhibition of mitogen-activated protein kinase and insulin signaling is specific, and not due to some toxic or nonspecific effect on the cells. Moreover, p110(CAAX) stimulated IRS-1 Ser/Thr phosphorylation, and inhibited IRS-1 associated PI 3-kinase activity, without affecting insulin receptor tyrosine phosphorylation, suggesting that it may play an important role as a negative regulator for insulin signaling. In conclusion, our studies show that membrane-targeted PI 3-kinase can mimic a number of biologic effects normally induced by insulin. In addition, the persistent activation of PI 3-kinase induced by p110(CAAX) expression leads to desensitization of specific signaling pathways. Interestingly, the state of cellular insulin resistance is not global, in that some of insulin's actions are inhibited, whereas others are intact.  相似文献   

10.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号