首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution, inheritance and recombination rate of genes located in the pseudoautosomal region 1 (PAR1) is exceptional within the human genome. Pseudoautosomal genes are identical on X and Y chromosomes and are not inherited in a sex linked manner. Due to an obligatory recombination event in male meiosis, pseudoautosomal genes are exchanged frequently between X and Y chromosomes. During the isolation, characterization and sequencing of a novel gene PPP2R3L, which was classified by sequence homology as a novel member of the protein phosphatase regulatory subunit families, it became apparent that cosmids of different origin harboring this gene are highly polymorphic between individuals, both at the nucleotide level and in the number.  相似文献   

2.
The Human Pseudoautosomal Region (PAR): Origin, Function and Future   总被引:1,自引:0,他引:1  
The pseudoautosomal regions (PAR1 and PAR2) of the human X and Y chromosomes pair and recombine during meiosis. Thus genes in this region are not inherited in a strictly sex-linked fashion. PAR1 is located at the terminal region of the short arms and PAR2 at the tips of the long arms of these chromosomes. To date, 24 genes have been assigned to the PAR1 region. Half of these have a known function. In contrast, so far only 4 genes have been discovered in the PAR2 region. Deletion of the PAR1 region results in failure of pairing and male sterility. The gene SHOX (short stature homeobox-containing) resides in PAR1. SHOX haploinsufficiency contributes to certain features in Turner syndrome as well as the characteristics of Leri-Weill dyschondrosteosis. Only two of the human PAR1 genes have mouse homologues. These do not, however, reside in the mouse PAR1 region but are autosomal. The PAR regions seem to be relics of differential additions, losses, rearrangements and degradation of the X and Y chromosome in different mammalian lineages. Marsupials have three homologues of human PAR1 genes in their autosomes, although, in contrast to mouse, do not have a PAR region at all. The disappearance of PAR from other species seems likely and this region will only be rescued by the addition of genes to both X and Y, as has occurred already in lemmings. The present review summarizes the current understanding of the evolution of PAR and provides up-to-date information about individual genes residing in this region.  相似文献   

3.
Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.  相似文献   

4.
Recombination between the X and Y human sex chromosomes is limited to the two pseudoautosomal regions (PARs) that present quite distinct evolutionary origins. Despite the crucial importance for male meiosis, genetic diversity patterns and evolutionary dynamics of these regions are poorly understood. In the present study, we analyzed and compared the genetic diversity of the PAR regions using publicly available genomic sequences encompassing both PAR1 and PAR2. Comparisons were performed through allele diversities, linkage disequilibrium status and recombination frequencies within and between X and Y chromosomes. In agreement with previous studies, we confirmed the role of PAR1 as a male-specific recombination hotspot, but also observed similar characteristic patterns of diversity in both regions although male recombination occurs at PAR2 to a much lower extent (at least one recombination event at PAR1 and in ≈1% in normal male meioses at PAR2). Furthermore, we demonstrate that both PARs harbor significantly different allele frequencies between X and Y chromosomes, which could support that recombination is not sufficient to homogenize the pseudoautosomal gene pool or is counterbalanced by other evolutionary forces. Nevertheless, the observed patterns of diversity are not entirely explainable by sexually antagonistic selection. A better understanding of such processes requires new data from intergenerational transmission studies of PARs, which would be decisive on the elucidation of PARs evolution and their role in male-driven heterosomal aneuploidies.  相似文献   

5.
The pseudoautosomal region (PAR) is a genomic segment on mammalian sex chromosomes where sequence homology mimics that seen between autosomal homologues. The region is essential for pairing and proper segregation of sex chromosomes during male meiosis. As yet, only human/chimp and mouse PARs have been characterized. The two groups of species differ dramatically in gene content and size of the PAR and therefore do not provide clues about the likely evolution and constitution of PAR among mammals. Here we characterize the equine PAR by i) isolating and arranging 71 BACs containing 129 markers (110 STS and 19 genes) into two contigs spanning the region, ii) precisely localizing the pseudoautosomal boundary (PAB), and iii) describing part of the contiguous X- and Y-specific regions. We also report the discovery of an approximately 200 kb region in the middle of the PAR that is present in the male-specific region of the Y (MSY) as well. Such duplication is a novel observation in mammals. Further, comparison of the equine PAR with the human counterpart shows that despite containing orthologs from an additional 1 Mb region beyond the human PAR1, the equine PAR is around 0.9 Mb smaller than the size of the human PAR. We theorize that the PAR varies in size and gene content across evolutionarily closely as well as distantly related mammals. Although striking differences like those observed between human and mouse may be rare, variations similar to those seen between horse and human may be prevalent among mammals.  相似文献   

6.
We report the molecular characterization of a ring X chromosome that was transmitted from a mother to a male who has short stature and minor dysmorphic features. This represents only the second reported ring X chromosome in a male. The ring is derived from breakage within the Xp pseudoautosomal region (PAR) and just proximal to the Xq PAR. The total amount of deleted material is 700-900 kb DNA and includes six known transcribed genes. Interestingly, SHOX, a gene implicated in short stature, is not deleted from the ring chromosome. Possible pathogenetic explanations for the patient's clinical features include insufficient dosage of deleted genes, a position effect on SHOX expression, and cell death during development because of ring chromosome nondisjunction. The findings are also relevant to observations made of "complete" ring chromosomes.  相似文献   

7.
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into theMa Y chromosome generates an extended PAR. The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.  相似文献   

8.
It is commonly believed that a high recombination rate such as that in a pseudoautosomal region (PAR) greatly increases the mutation rate because a 170-fold increase was estimated for the mouse PAR region. However, sequencing PAR and non-PAR introns of the Fxy gene in four Mus taxa, we found an increase of only twofold to fivefold. Furthermore, analyses of sequence data from human and orangutan PAR and X-linked regions and from autosomal regions showed a weak effect of recombination on mutation rate (a slope of less than 0.2% per cM/Mb), although a much stronger effect on GC content (1% to 2% per cM/Mb). Because typical recombination rates in mammals are much lower than those in PARs, the mutagenicity of recombination is weak or, at best, moderate, although its effect on GC% is much stronger. In addition, contrary to a previous study, we found no Fxy duplicate in Mus spretus.  相似文献   

9.
The mammalian X and Y chromosomes are very different in size and gene content. The Y chromosome is much smaller than the X and consists largely of highly repeated non-coding DNA, containing few active genes. The 65-Mb human Y is homologous to the X over two small pseudoautosomal regions which together contain 13 active genes. The heterochromatic distal half of the human Yq is entirely composed of highly repeated non-coding DNA, and even the euchromatic portion of the differential region is largely composed of non-coding repeated sequences, amongst which about 30 active genes are located. The basic marsupial Y chromosome (about 10 Mb) is much smaller than that of humans or other eutherian mammals. It appears to include no PAR, since it does not undergo homologous pairing, synaptonemal complex formation or recombination with the X. We show here that the tiny dunnart Y chromosome does not share cytogenetically detectable sequences with any other chromosome, suggesting that it contains many fewer repetitive DNA sequences than the human or mouse Y chromosomes. However, it shares several genes with the human and/or mouse Y chromosome, including the sex determining gene SRY and the candidate spermatogenesis gene RBMY, implying that the marsupial and eutherian Y are monophyletic. This minimal mammalian Y chromosome might provide a good model Y in which to hunt for new mammalian Y specific genes.  相似文献   

10.
S Sun  YP Hsueh  J Heitman 《PLoS genetics》2012,8(7):e1002810
Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi.  相似文献   

11.
Park SH  Shin YK  Suh YH  Park WS  Ban YL  Choi HS  Park HJ  Jung KC 《Gene》2005,353(2):177-188
The human pseudoautosomal region 1 (PAR1) is essential for the obligatory X-Y crossover in male meiosis. Despite its critical role, comparative studies of human and mouse pseudoautosomal genes have been limited owing to the scarcity of genes conserved between the two species. Human CD99 is a 32-kDa cell surface protein that is encoded by the MIC2 gene localized to the PAR1. Although several sequences such as CD99L2, PBDX, and CD99L1 are related to CD99, its murine ortholog, Cd99, has not yet been identified. Here we report a novel mouse Cd99, designated D4, which shows overall sequence homology to CD99, with the highest conservation between the two genes being found in the transmembrane regions. In addition, the D4 protein displays biochemical characteristics, functional homology, and expression patterns similar to those of CD99. The D4 gene is localized on an autosome, chromosome 4, reflecting a common mapping feature with other mouse orthologs of human PAR1 genes. Furthermore, a phylogenetic analysis of CD99-related genes confirmed that the D4 gene is indeed an ortholog of CD99 and exhibits the accelerated evolution pattern of CD99 orthologs, as compared to the CD99L2 orthologs. On the basis of these findings, we suggest that CD99 belongs to the ancient PAR genes, and that the rapid interspecies divergence of its present sequence and map position is due to a high recombination frequency and the occurrence of chromosomal translocation, supporting the addition-attrition hypothesis for PAR evolution.  相似文献   

12.
The pseudoautosomal regions of the human sex chromosomes   总被引:25,自引:0,他引:25  
In human females, both X chromosomes are equivalent in size and genetic content, and pairing and recombination can theoretically occur anywhere along their entire length. In human males, however, only small regions of sequence identity exist between the sex chromosomes. Recombination and genetic exchange is restricted to these regions of identity, which cover 2.6 and 0.4 Mbp, respectively, and are located at the tips of the short and the long arm of the X and Y chromosome. The unique biology of these regions has attracted considerable interest, and complete long-range restriction maps as well as comprehensive physical maps of overlapping YAC clones are already available. A dense genetic linkage map has disclosed a high rate of recombination at the short arm telomere. A consequence of the obligatory recombination within the pseudoautosomal region is that genes show only partial sex linkage. Pseudoautosomal genes are also predicted to escape X-inactivation, thus guaranteeing an equal dosage of expressed sequences between the X and Y chromosomes. Gene pairs that are active on the X and Y chromosomes are suggested as candidates for the phenotypes seen in numerical X chromosome disorders, such as Klinefelter's (47,XXY) and Turner's syndrome (45,X). Several new genes have been assigned to the Xp/Yp pseudoautosomal region. Potential associations with clinical disorders such as short stature, one of the Turner features, and psychiatric diseases are discussed. Genes in the Xq/Yq pseudoautosomal region have not been identified to date.  相似文献   

13.
This paper establishes that recombination drives the evolution of GC content in a significant way. Because the human P-arm pseudoautosomal region (PAR1) has been shown to have a high recombination rate, at least 20-fold more frequent than the genomic average of approximately 1 cM/Mb, this region provides an ideal system to study the role of recombination in the evolution of base composition. Nine non-coding regions of PAR1 are analyzed in this study. We have observed a highly significant positive correlation between the recombination rate and GC content (rho = 0.837, p < or = 0.005). Five regions that lie in the distal part of PAR1 are shown to be significantly higher than genomic average divergence. By comparing the intra- and inter-specific AT->GC -GC->AT ratios, we have detected no fixation bias toward GC alleles except for L254915, which has excessive AT-->GC changes in the human lineage. Thus, we conclude that the high GC content of the PAR1 genes better fits the biased gene conversion (BGC) model.  相似文献   

14.
Comparative studies of genes in the pseudoautosomal region (PAR) of human and mouse sex chromosomes have thus far been very limited. The only comparisons that can presently be made indicate that the PARs of humans and mice are not identical in terms of gene content. Here we describe additional comparative studies of human pseudoautosomal genes and their mouse homologs. Using a somatic cell hybrid mapping panel, we have assigned the mouse homolog of the human pseudoautosomal interleukin 3 receptor alpha subunit (IL3RA) gene to mouse Chromosome (Chr) 14. Attempts to clone the mouse homolog of the human pseudoautosomal adenine nucleotide translocase-3 (ANT3) gene resulted in the isolation of the murine homologs of the human ANT1 and ANT2 genes. The mouse Ant1 and Ant2 genes are very similar in sequence to their human homologs, and we have mapped them to mouse Chromosomes (Chrs) (8 and X respectively) that exhibit conserved synteny with the chromosomes on which the human genes are located. In contrast, the homolog of ANT3 appears to be either very divergent or absent from the mouse genome. Southern blot analysis of DNA from a variety of mammalian species shows restricted conservation of human pseudoautosomal genes, a trend that also applies to the two cloned mouse homologs of these genes and to neighboring human genes in distal Xp22.3. Our observations combined with those of other workers lead us to propose a model for the evolution of the PAR that includes both rapid sequence evolution and the incremental reduction in size of the region during mammalian evolution. Received: 4 May 1995 / Accepted: 21 August 1995  相似文献   

15.
The mammalian X and Y chromosomes are thought to have evolved from a common, nearly homologous chromosome pair. Although there is little sequence similarity between the mouse or the human X and Y, there are several regions in which moderate to extensive sequence homologies have been found, including, but not limited to, the so-called pseudoautosomal segment, in which X-Y pairing and recombination take place. The steroid sulfatase gene is in the pseudoautosomal region of the mouse, but not in man. We have cloned and characterized the human STS X-encoded locus and a pseudogene that is present on the long arm of the Y chromosome. Our data in humans and other primates suggest that there has been a pericentric inversion of the Y chromosome during primate evolution that has disrupted the former pseudoautosomal arrangement of these genes. These results provide additional insight into the evolution of the sex chromosomes and into the nature of this interesting portion of the human genome.  相似文献   

16.
《Genomics》1995,29(3)
Due to its unique biology of partial sex linkage and high recombination rates, the pseudoautosomal region (PAR1) on both X and Y chromosomes has attracted considerable interest. In addition, an extremely high level of YAC instability has been observed in this region. We have derived 82 YAC clones from six different YAC libraries mapping to this 2.6-Mb region. Of these a subset of 22 YACs was analyzed in detail. YAC contigs were assembled using 67 pseudoautosomal probes, of which 64 were unambiguously ordered. All markers are well distributed over the entire region, including the middle part of the region, which has previously been found difficult to contig. Two gaps of less than 50 kb within the genomic locus of CSF2RA and around XE7 remain, which could not be covered with YACs, cosmids, or phages. This YAC contig anchored on the physical map of PAR1 represents one of the best characterized large regions of the human genome with a map completion greater than 90% at 100-kb resolution and has permitted the accurate localization of all known genes within this region.  相似文献   

17.
Filatov DA  Gerrard DT 《Gene》2003,317(1-2):67-77
It has been suggested that recombination may be mutagenic, which, if true, would inflate intraspecies diversity and interspecies silent divergence in regions of high recombination. Here, we test this hypothesis comparing human/orangutan genome-wide non-coding divergence (K) to that in the pseudoautosomal genes which were reported to recombine much more frequently than the rest of the genome. We demonstrate that, compared to the average human/orangutan non-coding divergence (K=3%), the substitution rate is significantly elevated in the introns of SHOX (K=5.7%), PPP2R3L (K=8.7%) and ASMT (K=6.5%) genes located in the human and orangutan Xp/Yp pseudoautosomal region (p-PAR), where recombination is over 20-fold higher than the genomic average. On the other hand, human/orangutan non-coding divergence at the Xp/Yp pseudoautosomal boundary (K=3.5%) and in the SYBL1 gene (K=2.7%), located in the human Xq/Yq pseudoautosomal region (q-PAR), where recombination is known to be less frequent than in p-PAR, was not significantly higher than the genome average. The data are consistent with the hypothesis that recombination may be mutagenic.  相似文献   

18.
XO Turner women, irrespective of the parental source of the X chromosome, are of short stature, and this is now thought to be largely a consequence of haploinsufficiency for the pseudoautosomal region (PAR) gene SHOX. X(p)O mice (with a paternal X) are developmentally retarded in fetal life, are underweight at birth, and show reduced weight gain in the first few weeks after birth. X(m)O mice, on the other hand, are more developmentally advanced than their XX siblings in fetal life; their postnatal growth has not hitherto been assessed. Here we show that X(m)O mice are not underweight at birth, but they nevertheless show reduced weight gain postnatally. The fact that postnatal growth is affected in X(p)O and X(m)O mice, means that this must be due to X dosage deficiency. In order to see if haploinsufficiency for a PAR gene was responsible for this growth deficit (cf SHOX deficiency in Turner women), X(m)Y*(X) females, in which the Y*(X) chromosome provides a second copy of the PAR, were compared with XX females. These X(m)Y*(X) females were also growth-retarded relative to their XX sibs, suggesting that it may be haploinsufficiency for a non-dosage-compensated X gene or genes outside the PAR that is responsible for the postnatal growth deficit in XO mice. The X genes known to escape X inactivation in the mouse have closely similar Y homologues. X(m)YSRY-negative females were therefore compared with XX females to see if the presence of the SRY-negative Y chromosome corrected the growth deficit; this proved to be the case. The postnatal growth deficit of XO mice is therefore probably due to haploinsufficiency for a non-dosage-compensated X gene that has a Y homologue that provides an equivalent function in the somatic tissues of males.  相似文献   

19.
The existence of sexually antagonistic (SA) polymorphism is widely considered the most likely explanation for the evolution of suppressed recombination of sex chromosome pairs. This explanation is largely untested empirically, and no such polymorphisms have been identified, other than in fish, where no evidence directly implicates these genes in events causing loss of recombination. We tested for the presence of loci with SA polymorphism in the plant Silene latifolia, which is dioecious (with separate male and female individuals) and has a pair of highly heteromorphic sex chromosomes, with XY males. Suppressed recombination between much of the Y and X sex chromosomes evolved in several steps, and the results in Bergero et al. (2013) show that it is still ongoing in the recombining or pseudoautosomal, regions (PARs) of these chromosomes. We used molecular evolutionary approaches to test for the footprints of SA polymorphisms, based on sequence diversity levels in S. latifolia PAR genes identified by genetic mapping. Nucleotide diversity is high for at least four of six PAR genes identified, and our data suggest the existence of polymorphisms maintained by balancing selection in this genome region, since molecular evolutionary (HKA) tests exclude an elevated mutation rate, and other tests also suggest balancing selection. The presence of sexually antagonistic alleles at a locus or loci in the PAR is suggested by the very different X and Y chromosome allele frequencies for at least one PAR gene.  相似文献   

20.
A family of DNA loci (DNF28) from the pseudoautosomal region of the human sex chromosomes is characterized by a repeated element (STIR: subtelomeric interspersed repeat) which detects homologous sequences in the telomeric regions of human autosomes by in situ hybridization. Several STIR elements from both the pseudoautosomal region and terminal parts of autosomes were cloned and sequenced. A conserved 350 bp sequence and some characteristic structural differences between the autosomal and pseudoautosomal STIRs were observed. Screening of the DNA sequence databases with a consensus sequence revealed the presence of STIRs in several human loci localized in the terminal parts of different chromosomes. We mapped single copy probes flanking the cloned autosomal STIRs to the subtelomeric parts of six different chromosomes by in situ hybridization and genetic linkage analysis. The linkage data show a greatly increased recombination frequency in the subtelomeric regions of the chromosomes, especially in male meiosis. The STIR elements, specifically located in subtelomeric regions, could play a role in the peculiar recombination properties of these chromosomal regions, e.g. by promoting initiation of pairing at meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号