首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
采用饲养试验方法,研究了平均体质量为(7.16±0.07)g的大菱鲆(Scophthalmus maximus)幼鱼分别在盐度12、18、24、30和36下饲养60 d后,其鳃Na+-K+-ATPase活力、血清离子浓度、生长激素(GH)、皮质醇激素(COR)、特定生长率(SGR)和饲料效率(FCE)的变化。结果表明:幼鱼鳃Na+-K+-ATPase活力、血清Na+浓度均随盐度的升高而上升,分别在3.48~8.30 U/mg和169.99~180.00 mmol/L之间,其中12盐度组最低,36盐度组最高。幼鱼血清中K+和Cl-浓度分别在2.20~3.47 mmol/L和136.67~142.00 mmol/L之间,各盐度组之间差异不显著。幼鱼血清中GH和COR浓度分别在0.41~1.66 ng/ml和35.33~76.41 ng/ml之间;其中GH在36盐度组最高,12盐度组最低,而COR在12盐度组最高,36盐度组最低。幼鱼SGR和FCE分别在(1.45~2.00)%/d和1.12%~1.38%之间,与盐度的相关性不显著,两者均为12盐度组最低。由此可见,盐度变化显著影响大菱鲆幼鱼鳃Na+-K+-ATPase活力、血清Na+浓度和激素含量。本研究对大菱鲆养殖生理生态条件分析具有重要参考意义,研究结果可为大菱鲆养殖的盐度选择提供理论依据。  相似文献   

2.
盐度对花鲈幼鱼消化酶和抗氧化系统的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为探讨不同盐度对花鲈(Lateolabrax maculatus)幼鱼消化酶活性和抗氧化水平的影响,经过30 d养殖,应用试剂盒检测了盐度0、10、20、30条件下胃、幽门盲囊及肠道中胃蛋白酶、α-淀粉酶、脂肪酶活力,肝和肌肉组织中超氧化物歧化酶、过氧化氢酶的活力以及总抗氧化能力和丙二醛含量。结果显示,胃蛋白酶活力在0盐度组最高,4个盐度组间具有显著性差异(P < 0.05);同一盐度组,胃蛋白酶活性在胃组织中高于幽门盲囊和肠道。随着盐度的增加,胃组织的α-淀粉酶活力呈逐渐降低趋势,幽门盲囊和肠道的α-淀粉酶活力则逐渐升高。胃组织中,0盐度组脂肪酶有较高活性,10盐度组脂肪酶活性最低,20和30盐度组酶活性逐渐升高,并在30盐度组达最大值,4个盐度组之间差异显著(P < 0.05);幽门盲囊中,脂肪酶活力随盐度的增加,呈现先升高后降低趋势;肠组织中,0盐度和10盐度组脂肪酶酶活力差异不显著(P > 0.05),20盐度和30盐度组增加显著(P < 0.05)。肝组织超氧化物歧化酶和过氧化氢酶在0盐度组活性最高,随盐度变化,呈现相似的变化趋势;肌肉中超氧化物歧化酶和过氧化氢酶活性整体上随盐度增高有上升趋势。0盐度组和30盐度组肝组织丙二醛含量和总抗氧化能力观测值都较高。在肌肉中,丙二醛含量在10盐度组达到较高值,随后盐度增加丙二醛含量变化不显著(P > 0.05);总抗氧化能力含量也在10盐度组时达到最高值,其余组均下降。本研究认为,花鲈幼鱼不同消化酶活性所需的盐度条件各有差异,同时抗氧化系统能够响应不同的盐度条件。  相似文献   

3.
为了了解菊黄东方鲀(Takifugu flavidus)、暗纹东方鲀(T.obscurus)及其杂交F1代的肌肉营养特征,利用生物化学方法,从每类实验样本中取9尾对其肌肉中的粗蛋白、粗脂肪、水分、粗灰分和氨基酸成分进行了测定和分析。结果显示:(1)杂交F1代在生长方面具有明显的杂交优势,与亲本之间存在着显著差异(P0.05),杂交F1代的体重为其亲本的1.48~1.77倍;(2)杂交F1代肌肉水分含量与其母本含量相近,但粗脂肪含量均较亲本少(P0.05),粗蛋白含量则与亲本差异不显著(P0.05);(3)除色氨酸和胱氨酸外,16种氨基酸均在肌肉样本中被检测到,除甲硫氨酸外,其余15种氨基酸间含量均存在着显著性差异(P0.05)。菊黄东方鲀(♀)×暗纹东方鲀(♂)杂交F1代的总氨基酸含量最高,而暗纹东方鲀(♀)×菊黄东方鲀(♂)F1代总氨基酸含量则介于两亲本之间。对其必需氨基酸总量进行分析发现,菊黄东方鲀与其正反杂交F1代之间均存在显著性差异(P0.05),而暗纹东方鲀与其正反杂交F1代之间差异不显著(P0.05);(4)肌肉营养品质评价结果表明,菊黄东方鲀(♀)×暗纹东方鲀(♂)杂交F1代的鲜味氨基酸含量为26.68%,明显高于双亲样本(菊黄东方鲀22.28%、暗纹东方鲀25.20%),而暗纹东方鲀(♀)×菊黄东方鲀(♂)F1代的鲜味氨基酸总量(23.30%)较其父本偏高,但低于其母本。研究结果表明,杂交东方鲀的肌肉营养综合了双亲的优良特性,特别是是菊黄东方鲀(♀)×暗纹东方鲀(♂)杂交F1代,拥有最高的鲜味氨基酸含量,具有推广价值。  相似文献   

4.
盐度对卵形鲳鲹幼鱼渗透压调节和饥饿失重的影响   总被引:1,自引:0,他引:1  
区又君  范春燕  李加儿  于娜 《生态学报》2014,34(24):7436-7443
为探讨盐度对卵形鲳鲹(Trachinotus ovatus)渗透压调节的影响,研究了深水网箱养殖的卵形鲳鲹幼鱼鳃Na+-K+-ATP酶(NKA)活性,血浆、鳃和肾渗透压以及饥饿失重在盐度渐变条件下的反应。实验设5个盐度梯度组,分别为5、15、25、30和35。结果显示,鳃NKA活性除盐度15外都呈先下降后升高随之回落并趋于稳定的趋势,在2 d后的各时间节点随盐度变化呈"U"型分布;血浆渗透压在相同盐度下随时间延长呈先升高后下降再升高随后回落并趋于稳定,2 d后在各时间节点与盐度呈正相关关系,盐度30和35组的血浆渗透压显著高于其它盐度组(P0.05);肾脏对盐度变化的渗透调节比鳃敏感,在低盐度时(30以下),鰓和肾共同完成对渗透压的调节,在较高盐度(30以上),肾对渗透压的调节起主导作用。盐度变化对卵形鲳鲹的饥饿失重率有极显著的影响。研究表明,卵形鲳鲹幼鱼对盐度的渗透调节能力较强,在盐度5—35范围内的盐度变化均能适应,一般在1—2 d内可达到稳定,且更适于在低盐度水环境中生活。  相似文献   

5.
温度和盐度对褐牙鲆幼鱼渗透生理及抗氧化水平的影响   总被引:1,自引:0,他引:1  
采用双因素析因实验设计方法,研究了温度(20℃、24℃、28℃)和盐度(10‰、30‰)急性应激对褐牙鲆(Paralichthys olivaceus)幼鱼渗透生理和抗氧化水平的影响。结果表明:盐度和温度变化对各实验组1d和6d时褐牙鲆幼鱼血浆皮质醇含量均无显著性差异。在高温低盐(28℃、10‰)环境中1d时渗透压显著高于其他各实验组,6d时无显著性差异。牙鲆幼鱼在28℃环境中1d时鳃Na+-K+-ATP酶活性显著高于20℃和24℃;6d时,温度和盐度对牙鲆幼鱼鳃Na+-K+-ATP酶活性有显著交互影响作用。1d时,随着温度的升高或盐度的降低牙鲆幼鱼肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性呈现上升趋势,并且高温低盐(28℃、盐度10‰)组褐牙鲆幼鱼肝脏丙二醛(MDA)含量显著高于其他各组;在3个实验温度下,10‰环境中牙鲆幼鱼肝脏脂质过氧化物(LPO)的含量高于30‰。在6d时,各实验组间肝脏SOD、CAT活性及MDA含量无显著性差异。因此,褐牙鲆能够耐受温度20—28℃和低至盐度10‰的环境条件,应激早期温度和盐度的变化可引起褐牙鲆幼鱼渗透生理和抗氧化水平的变化,高温低盐对褐牙鲆幼鱼抗氧化水平的影响最大,至6d可基本恢复稳定。  相似文献   

6.
研究了环境盐度急性胁迫对鲻鱼幼鱼(Mugil cephalus)鳃丝Na+/K+-ATPase(NKA)活性及体内含水量的影响.结果表明,将幼鱼从S33(盐度33)的对照组中直接转移至S0(盐度0)、S10(盐度10)、S20(盐度20)、S33和S40(盐度40)的水体中,随盐度降低各盐度处理的死亡率迅速升高.各处理...  相似文献   

7.
采用双因素析因实验设计方法,研究了温度(20℃、24℃、28℃)和盐度(10‰、30‰)急性应激对褐牙鲆(Paralichthys olivaceus)幼鱼渗透生理和抗氧化水平的影响。结果表明:盐度和温度变化对各实验组1d和6d时褐牙鲆幼鱼血浆皮质醇含量均无显著性差异。在高温低盐(28℃、10‰)环境中1d时渗透压显著高于其他各实验组,6d时无显著性差异。牙鲆幼鱼在28℃环境中1d时鳃Na+-K+-ATP酶活性显著高于20℃和24℃;6d时,温度和盐度对牙鲆幼鱼鳃Na+-K+-ATP酶活性有显著交互影响作用。1d时,随着温度的升高或盐度的降低牙鲆幼鱼肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性呈现上升趋势,并且高温低盐(28℃、盐度10‰)组褐牙鲆幼鱼肝脏丙二醛(MDA)含量显著高于其他各组;在3个实验温度下,10‰环境中牙鲆幼鱼肝脏脂质过氧化物(LPO)的含量高于30‰。在6d时,各实验组间肝脏SOD、CAT活性及MDA含量无显著性差异。因此,褐牙鲆能够耐受温度20—28℃和低至盐度10‰的环境条件,应激早期温度和盐度的变化可引起褐牙鲆幼鱼渗透生理和抗氧化水平的变化,高温低盐对褐牙鲆幼鱼抗氧化水平的影响最大,至6d可基本恢复稳定。  相似文献   

8.
盐度对大麻哈鱼幼鱼血液生化指标及肝组织的影响   总被引:1,自引:0,他引:1  
模拟大麻哈鱼幼鱼降海洄游水域环境盐度,设0(淡水对照)、5、10、15、20共5个盐度组,以体质量(26.57±6.32)g、全长(14.44±1.05)cm幼鱼分别进行130 d饲养试验,通过血液生化指标分析及肝组织观察,研究了大麻哈鱼降海期对不同盐度适应过程的生理变化.结果表明:血清渗透压和血清Na+、Cl-变化趋势与水体盐度变化基本一致.高盐度(15、20)组血清Na+、Cl-、Mg2+含量与低盐度(5)组和淡水组差异显著;各盐度处理组血清K+含量均显著低于淡水组.盐度10组的血糖浓度显著高于盐度5和20组;各盐度处理组总胆汁酸与淡水组差异显著;幼鱼血清总蛋白(TP)、白蛋白(ALB)、球蛋白(GLB)含量随盐度的升高总体呈下降趋势,其中淡水组TP和GLB含量显著高于盐度15和20组.淡水组血清谷丙转氨酶(ALT)、谷草转氨酶(AST)与高盐度组差异显著.低盐度(盐度0、5)下试验幼鱼肝细胞有部分破裂现象,肝组织空泡化严重.各组试验鱼生长和成活率无明显差异,生理生化指标显示大麻哈鱼幼鱼降海期适应盐度以10~20为宜.  相似文献   

9.
选用室内人工培育的性腺已发育到Ⅱ期的脊尾白虾亲虾,经逐级淡化后,盐度稳定在2、5、10、15、20、25、30,研究了盐度对雌虾抱卵、胚胎发育及子代生长发育的影响.结果表明: 在试验盐度范围内脊尾白虾性腺均可发育成熟,但在盐度2时无法完成抱卵,最适抱卵盐度为10~20;在抱卵盐度范围内,胚胎均可正常发育,盐度对胚胎发育速率影响显著,15、20、25盐度下的孵化时间显著低于其他盐度组;盐度对脊尾白虾幼体后的变态和存活无显著影响,但对仔虾的个体干质量影响显著,15和20盐度下仔虾的干质量显著高于其他盐度组;盐度对20日龄脊尾白虾的生长影响显著,其特定生长率随着盐度升高而逐渐增大,在盐度20时达到最大,之后开始降低;鳃Na+-K+ ATPase的mRNA相对表达量在高盐或低盐时均较高,表达量最低时的理论盐度为17.5,可能为脊尾白虾的等渗点.研究表明,脊尾白虾亲虾可在较广盐度范围内繁殖,20日龄脊尾白虾在其理论等渗点附近具有较快的生长速度.
  相似文献   

10.
在实验室条件下,研究了9个不同盐度处理(5、10、15、20、25、30(对照)、35、40、45)对大叶藻实生幼苗存活和生长的影响,分析了大叶藻实生幼苗的盐度适宜性。结果表明:经30 d培养试验,盐度5和10处理组实生幼苗很快腐烂,仅存活10 d,盐度20~45处理组的幼苗存活率在49%~58%,显著高于盐度5~15处理组(P0.05);盐度20处理组幼苗的形态学特征和生长率各指标均达到最大值,其中叶鞘长、根长和根生长率显著高于对照组和其他处理组,单株总叶片面积和叶片生长率与对照组无明显差异,但显著高于盐度15处理组和高盐(35~45)处理组(P0.05)。适宜性分析表明,大叶藻实生幼苗盐度耐受范围较广,但适宜生长的盐度范围仅在盐度20~30,最适生长盐度为20。本研究结果为建立海草实生苗的人工培育技术提供了理论依据。  相似文献   

11.
This study was carried out to determine the effects of gradual salinity increase on osmoregulatory ability of the Caspian roach Rutilus caspicus, under conditions which mimic stocking conditions of hatchery-raised fish. Initially, 30 juvenile fish (mean ± S.D. 3.20 ± 0.34 g) were transferred to 20 l circular tanks, in which salinities were changed in a stepwise fashion, from 0 to 5, 10 or 15 at 48 h intervals. The fish at salinity 15 were held for an additional 48 h at this salinity. Forty-eight hours after salinity transfer, survival rate, haematocrit, plasma Cl(-) , Na(+) and K(+) concentrations, osmolality and gill Na(+) /K(+) -ATPase (NKA) activity were measured. The only effect of exposure to 5 was a significant reduction in haematocrit compared to the freshwater control group. Exposure to salinity 10 raised haematocrit, Cl(-) and Na(+) concentrations and osmolality. At 48 h exposure to salinity 15, haematocrit, Cl(-) and Na(+) concentrations and osmolality were significantly higher than freshwater controls, and gill NKA activity was significantly lower, but the effect on NKA was no longer evident at 96 h exposure. There were no effects on survival. These results indicate that R. caspicus juveniles experience an initial non-lethal iono-osmotic perturbation following salinity increase but can adapt to brackish water at salinity 15.  相似文献   

12.
Toxic Pseudo-nitzschia australis strains isolated from French coastal waters were studied to investigate their capacity to adapt to different salinities. Their acclimation to different salinity conditions (10, 20, 30, 35, and 40) was studied on growth, photosynthetic capacity, cell biovolume, and domoic acid (DA) content. The strains showed an ability to acclimate to a salinity range from 20 to 40, with optimal growth rates between salinities 30 and 40. The highest cell biovolume was observed at the lowest salinity 20 and was associated with the lowest growth rate. Salinity did not affect the photosynthetic activity; Fv/Fm values and the pigment contents remained high with no significant difference among salinities. An enhanced production of zeaxanthin was, however, observed in the late stationary and decline phases in all cultures except for those acclimated to salinity 20. In terms of cellular toxin content, DA concentrations were 2 to 3-fold higher at the lowest salinity (20) than at the other salinities and were combined with a low amount of dissolved DA. The fact that P. australis accumulate more DA per cell in less saline waters, illustrates that climate-related changes in salinity may affect Pseudo-nitzschia physiology through direct effects on growth, physiology, and toxin content.  相似文献   

13.
Global warming is having a significant impact around the world, modifying environmental conditions in many areas, including in zones that have been thermally stable for thousands of years, such as Antarctica. Stenothermal sedentary intertidal fish species may suffer due to warming, notably if this causes water freshening from increased freshwater inputs. Acute decreases in salinity, from 33 down to 5, were used to assess osmotic responses to environmental salinity fluctuations in Antarctic spiny plunderfish Harpagifer antarcticus, in particular to evaluate if H. antarcticus is able to cope with freshening and to describe osmoregulatory responses at different levels (haematological variables, muscle water content, gene expression, NKA activity). H. antarcticus were acclimated to a range of salinities (33 as control, 20, 15, 10 and 5) for 1 week. At 5, plasma osmolality and calcium concentration were both at their lowest, while plasma cortisol and percentage muscle water content were at their highest. At the same salinity, gill and intestine Na+-K+-ATPase (NKA) activities were at their lowest and highest, respectively. In kidney, NKA activity was highest at intermediate salinities (15 and 10). The salinity-dependent NKA mRNA expression patterns differed depending on the tissue. Marked changes were also observed in the expression of genes coding membrane proteins associated with ion and water transport, such as NKCC2, CFTR and AQP8, and in the expression of mRNA for the regulatory hormone prolactin (PRL) and its receptor (PRLr). Our results demonstrate that freshening causes osmotic imbalances in H. antarcticus, apparently due to reduced capacity of both transport and regulatory mechanisms of key organs to maintain homeostasis. This has implications for fish species that have evolved in stable environmental conditions in the Antarctic, now threatened by climate change.  相似文献   

14.
The Gulf killifish, Fundulus grandis, is a euryhaline teleost which has important ecological roles in the brackish-water marshes of its native range as well as commercial value as live bait for saltwater anglers. Effects of osmoregulation on growth, survival, and body condition at 0.5, 5.0, 8.0 and 12.0‰ salinity were studied in F. grandis juveniles during a 12-week trial. Relative expression of genes encoding the ion transport proteins Na(+)/K(+)-ATPase (NKA), Na(+)/K(+)/2Cl(-) cotransporter(NKCC1), and cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel was analyzed. At 0.5‰, F. grandis showed depressed growth, body condition, and survival relative to higher salinities. NKA relative expression was elevated at 7 days post-transfer but decreased at later time points in fish held at 0.5‰ while other salinities produced no such increase. NKCC1, the isoform associated with expulsion of ions in saltwater, was downregulated from week 1 to week 3 at 0.5‰ while CFTR relative expression produced no significant results across time or salinity. Our results suggest that Gulf killifish have physiological difficulties with osmoregulation at a salinity of 0.5‰ and that this leads to reduced growth performance and survival while salinities in the 5.0-12.0‰ are adequate for normal function.  相似文献   

15.
Freshwater (FW) spotted green pufferfish (Tetraodon nigroviridis) were transferred directly from a local aquarium to fresh water (FW; 0 per thousand ), brackish water (BW; 15 per thousand ), and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. No mortality was found. To investigate the efficient mechanisms of osmoregulation in the euryhaline teleost, distribution and expression of Na,K-ATPase (NKA) in gill and kidney of the pufferfish were examined and the osmolality, [Na+] and [Cl-] of the blood were assayed. The lowest levels of both relative protein abundance and activity were found to be exhibited in the BW group, and higher levels in the SW group than FW group. In all salinities, branchial NKA immunoreactivity was found in epithelial cells of the interlamellar region of the filament and not on the lamellae. Relative abundance of kidney NKA alpha-subunit, as well as the NKA activity, was found to be higher in the FW pufferfish than fish in BW or SW. Renal NKA appeared in the epithelial cells of distal tubules, proximal tubules, and collecting tubules, but not in glomeruli, in fish groups of various salinities. Plasma osmolality and chloride levels were significantly lower in FW pufferfish than those in BW and SW, whereas plasma sodium did not differ among the groups. Although identical distributions of NKA were found in either gill or kidney of FW-, BW- or SW-acclimated spotted green pufferfish, differential NKA expression in fish of various salinity groups was associated with physiological homeostasis (stable blood osmolality), and illustrated the impressive osmoregulatory ability of this freshwater and estuarine species in response to salinity challenge.  相似文献   

16.
Juvenile milkfish Chanos chanos (Forssk?l, 1775) were transferred from a local fish farm to fresh water (FW; 0 per thousand ), brackish water (BW; 10 per thousand, 20 per thousand ) and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. The blood and gill of the fish adapted to various salinities were analyzed to determine the osmoregulatory ability of this euryhaline species. No significant difference was found in plasma osmolality, sodium or chloride concentrations of milkfish adapted to various salinities. In FW, the fish exhibited the highest specific activity of Na, K-ATPase (NKA) in gills, while the SW group was found to have the lowest. Relative abundance of branchial NKA alpha-subunit revealed similar profiles. However, in contrary to other euryhaline teleosts, i.e. tilapia, salmon and eel, the naturally SW-dwelling milkfish expresses higher activity of NKA in BW and FW. Immunocytochemical staining has shown that most Na, K-ATPase immunoreactive (NKIR) cells in fish adapted to BW and SW were localized to the filaments with very few on the lamellae. Moreover, in FW-adapted milkfish, the number of NKIR cells found on the lamellae increased significantly. Such responses as elevated NKIR cell number and NKA activity are thought to improve the osmoregulatory capacity of the milkfish in hyposaline environments.  相似文献   

17.
The effect of salinity and time of exposure on metabolism and growth of juveniles of fat snook, Centropomus parallelus, were investigated. Food conversion efficiency (FCE), specific growth rate (SGR), oxygen consumption, ammonia excretion rate and O:N (oxygen/nitrogen) ratio were assessed on groups of fat-snook (mean weight 2 g) acclimated for 15- and 30-day periods, to 5‰, 20‰ and 30‰ salinities. For 15-day period, differences between FCEs as well as SGRs at different salinities were not significant. For 30-day period, however, these differences were significant between 5‰ and the other salinities, with the highest and lowest values at 5‰ and 30‰, respectively, for both parameters. Salinity and acclimation period exerted significant influence on the oxygen consumption, ammonia excretion and the O:N ratio of juveniles of C. parallelus. The lowest and highest oxygen consumption was at 20‰ for 15- and 30-day period, respectively. Differences in oxygen consumption between fishes maintained at 5‰ and at 30‰ were not significant, at each period, while between those maintained at 5‰ and 20‰, and at 20‰ and 30‰ differences were significant. Ammonia excretion rates were significantly different between all salinities, at each period, and between periods at each salinity, except at 30‰. The highest and lowest rates were found at 5‰ and 30‰, respectively. The highest O:N ratio for 15-day period was at 30‰ with no difference between those at 5‰ and 20‰. For 30-day period, differences of O:N ratio were significant between salinities. The effect of acclimation period on the O:N was significant only at 20‰. Although C. parallelus is a fish species adapted to face a wide variation of environmental salinity, results show that juvenile fishes kept at different salinities, in laboratory, found better condition to efficiently channel the energy of food into growth at 5‰ for both acclimation periods.  相似文献   

18.
急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响   总被引:11,自引:0,他引:11  
研究了环境盐度急性胁迫对军曹鱼(Rachycentron canadum)稚鱼鳃Na+-K+ATPase(NKA)活性及血清渗透压、Na+、K+和Cl-离子调节的影响.结果表明:将稚鱼从盐度37中直接转移至盐度0、5、15、25、37(对照)和45的水体中,12 h后仅盐度0处理出现死亡(死亡率100%).各处理鳃NKA活性和血清渗透压在最初3 h内出现一定波动,随后变化平稳.试验结束时(12 h), NKA活性与盐度梯度呈“U”型分布,盐度5处理酶活性显著高于其它处理(P<0.05),盐度15处理活性最低,而各处理的血清渗透压大小(293~399 mOsmol·kg-1)与盐度呈正相关;在3~12 h内稚鱼血清Na+和Cl-浓度随盐度升高而升高,但增幅较小,血清K+浓度则与盐度呈负相关;12 h稚鱼的等渗点为328.2 mOsm·kg-1,相当于盐度11.48,而Na+、K+和Cl-等离子点分别为155.2、6.16和137.1 mmol·L-1,分别相当于盐度10.68、20.44及8.41.军曹鱼在生理上具有广盐性鱼类的“低渗环境高NKA活性”特征,有较强及迅速的渗透压和离子调节与平衡能力.  相似文献   

19.
The osmoregulatory capabilities of 6-month-old juvenile obscure puffer Takifugu obscurus, transferred directly from fresh water to different salinities (0‰, freshwater control; 10‰; 20‰ and 30‰), were studied over an 8-day period. After transfer, plasma osmolality of the fish at 30‰ was significantly higher than those at all other salinities throughout the experiment. The Na+/K+ ATPase activity in the gills of the fish treated with various salinities increased significantly, peaking at 48 h, then decreased gradually to the control level at 192 h. Similar fluctuation trends of the Na+/K+ ATPase activity were observed in the kidneys. Modified Gaussian model provided accurate fits for the time-course changes in the Na+/K+ ATPase activities after abrupt salinity challenge. The results demonstrated that obscure puffer has strong capacity to tolerate abrupt salinity changes and can osmoregulate well over a wide range of salinities even in juvenile stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号