首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Abscisic acid (ABA) integrates the water status of a plant and causes stomatal closure. Physiological mechanisms remain poorly understood, however, because guard cells flanking stomata are small and contain only attomol quantities of ABA. Here, pooled extracts of dissected guard cells of Vicia faba L. were immunoassayed for ABA at sub‐fmol sensitivity. A pulse of water stress was imposed by submerging the roots in a solution of PEG. The water potentials of root and leaf declined during 20 min of water stress but recovered after stress relief. During stress, the ABA concentration in the root apoplast increased, but that in the leaf apoplast remained low. The ABA concentration in the guard‐cell apoplast increased during stress, providing evidence for intra‐leaf ABA redistribution and leaf apoplastic heterogeneity. Subsequently, the ABA concentration of the leaf apoplast increased, consistent with ABA import via the xylem. Throughout, the ABA contents of the guard‐cell apoplast, but not the guard‐cell symplast, were convincingly correlated with stomatal aperture size, identifying an external locus for ABA perception under these conditions. Apparently, ABA accumulates in the guard‐cell apoplast by evaporation from the guard‐cell wall, so the ABA signal in the xylem is amplified maximally at high transpiration rates. Thus, stomata will display apparently higher sensitivity to leaf apoplastic ABA if stomata are widely open in a relatively dry atmosphere.  相似文献   

2.
There is now strong evidence that the plant hormone abscisic acid (ABA) plays an important role in the regulation of stomatal behaviour and gas exchange of droughted plants. This regulation involves both long-distance transport and modulation of ABA concentration at the guard cells, as well as differential responses of the guard cells to a given dose of the hormone. We will describe how a plant can use the ABA signalling mechanism and other chemical signals to adjust the amount of water that it loses through its stomata in response to changes in both the rhizospheric and the aerial environment. The following components of the signalling process can play an important part in regulation: (a) ABA sequestration in the root; (b) ABA synthesis versus catabolism in the root; (c) the efficiency of ABA transfer across the root and into the xylem; (d) the exchange of ABA between the xylem lumen and the xylem parenchyma in the shoot; (e) the amount of ABA in the leaf symplastic reservoir and the efficiency of ABA sequestration and release from this compartment as regulated by factors such as root and leaf-sourced changes in pH; (f) cleavage of ABA from ABA conjugates in the leaf apoplast; (g) transfer of ABA from the leaf into the phloem; (h) the sensitivity of the guard cells to the [ABA] that finally reaches them; and lastly (i) the possible interaction between nitrate stress and the ABA signal.  相似文献   

3.
Early ABA Signaling Events in Guard Cells   总被引:1,自引:0,他引:1  
The plant hormone abscisic acid (ABA) regulates a wide variety of plant physiological and developmental processes, particularly responses to environmental stress, such as drought. In response to water deficiency, plants redistribute foliar ABA and/or upregulate ABA synthesis in roots, leading to roughly a 30-fold increase in ABA concentration in the apoplast of stomatal guard cells. The elevated ABA triggers a chain of events in guard cells, causing stomatal closure and thus preventing water loss. Although the molecular nature of ABA receptor(s) remains unknown, considerable progress in the identification and characterization of its downstream signaling elements has been made by using combined physiological, biochemical, biophysical, molecular, and genetic approaches. The measurable events associated with ABA-induced stomatal closure in guard cells include, sequentially, the production of reactive oxygen species (ROS), increases in cytosolic free Ca2+ levels ([Ca2+]i), activation of anion channels, membrane potential depolarization, cytosolic alkalinization, inhibition of K+ influx channels, and promotion of K+ efflux channels. This review provides an overview of the cellular and molecular mechanisms underlying these ABA-evoked signaling events, with particular emphasis on how ABA triggers an “electronic circuitry” involving these ionic components.  相似文献   

4.
The relationships of guard cell ABA content to eight stress-related physiological parameters were determined on intact Vicia faba L. plants that were grown hydroponically with split-root systems. Continuous stress was imposed by the addition of PEG to part of the root system. The water potentials of roots sampled after the addition of PEG were 0.25 MPa lower than the water potentials of other roots of the same plant, which were similar to the roots of untreated plants. The leaflet water potentials of plants sampled within 2 h of stress imposition were similar to those of control plants. However, leaf conductance was lower in plants sampled after only 20 min of stress imposition, and the root- and leaflet apoplastic ABA concentrations of these plants were higher than those of untreated plants. As the essence of this report, there was a linear relationship between guard cell ABA content and leaf conductance. Leaflet apoplastic ABA concentrations <150 nM were also linearly related to leaf conductance, but higher leaflet apoplastic ABA concentration did not cause equally large further declines in leaf conductance. It is suggested that evaporation from guard cell walls caused ABA to accumulate in the guard cell apoplast and this pool was saturated at high leaflet apoplastic ABA concentrations.  相似文献   

5.
McAdam SA  Brodribb TJ 《The Plant cell》2012,24(4):1510-1521
Stomatal guard cells regulate plant photosynthesis and transpiration. Central to the control of seed plant stomatal movement is the phytohormone abscisic acid (ABA); however, differences in the sensitivity of guard cells to this ubiquitous chemical have been reported across land plant lineages. Using a phylogenetic approach to investigate guard cell control, we examined the diversity of stomatal responses to endogenous ABA and leaf water potential during water stress. We show that although all species respond similarly to leaf water deficit in terms of enhanced levels of ABA and closed stomata, the function of fern and lycophyte stomata diverged strongly from seed plant species upon rehydration. When instantaneously rehydrated from a water-stressed state, fern and lycophyte stomata rapidly reopened to predrought levels despite the high levels of endogenous ABA in the leaf. In seed plants under the same conditions, high levels of ABA in the leaf prevented rapid reopening of stomata. We conclude that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential. These results support a gradualistic model of stomatal control evolution, offering opportunities for molecular and guard cell biochemical studies to gain further insights into stomatal control.  相似文献   

6.
Abscisic acid (ABA) prevents opening of closed stomata and causes open stomata to close. A dual-source model is proposed linking ABA to diurnal stomatal movements. Darkness would favour guard cell biosynthesis of endogenous ABA and disfavour ABA catabolism. At first light, xanthophyll cycling, isomerization of ABA precursors, and activation of a cytochrome P450 mono-oxygenase (CytP450) would deplete endogenous guard cell ABA. The NADPH-requiring CytP450 would be activated by elevated O2 and reduced CO2 concentrations resulting from mesophyll photosynthesis. An increased O2-to-CO2 ratio would limit the Calvin cycle in guard cells, diverting NADPH produced by photosynthetic electron transport to the cytosol where, along with elevated O2, it would activate CytP450. Depletion of endogenous ABA would liberate guard cells to extrude protons and accumulate the ions and water needed to increase guard cell turgor and open stomata. By midday, stomata would be regulated by steady-state concentrations of ABA delivered to the apoplast around guard cells by transpiration. In temperate conditions, ABA would reach concentrations high enough to trigger ion efflux from guard cells, but too low to defeat the accumulation of sugars used to maintain opening. In dry conditions, ABA would reach effective concentrations by midday, high enough to trigger ion efflux and inhibit sugar uptake, reducing apertures for the rest of the day. At sunset, conditions would again favour biosynthesis and disfavour catabolism of endogenous guard cell ABA. The model can be used to reconcile proposed cellular mechanisms for guard cell signal transduction with patterns of stomatal movements in leaves.  相似文献   

7.
Evaporation of water from the guard cell wall concentrates apoplastic solutes. We hypothesize that this phenomenon provides two mechanisms for responding to high transpiration rates. First, apoplastic abscisic acid is concentrated in the guard cell wall. Second, by accumulating in the guard cell wall, apoplastic sucrose (Suc) provides a direct osmotic feedback to guard cells. As a means of testing this second hypothesized mechanism, the guard cell Suc contents at a higher transpiration rate (60% relative humidity [RH]) were compared with those at a lower transpiration rate (90% RH) in broad bean (Vicia faba), an apoplastic phloem loader. In control plants (constant 60% RH), the guard cell apoplast Suc content increased from 97 +/- 81 femtomol (fmol) guard cell pair(-1) to 701 +/- 142 fmol guard cell pair(-1) between daybreak and midday. This increase is equivalent to approximately 150 mM external, which is sufficient to decrease stomatal aperture size. In plants that were shifted to 90% RH before daybreak, the guard cell apoplast Suc content did not increase during the day. In accordance, in plants that were shifted to 90% RH at midday, the guard cell apoplast Suc content declined to the daybreak value. Under all conditions, the guard cell symplast Suc content increased during the photoperiod, but the guard cell symplast Suc content was higher (836 +/- 33 fmol guard cell pair(-1)) in plants that were shifted to 90% RH. These results indicate that a high transpiration rate may result in a high guard cell apoplast Suc concentration, which diminishes stomatal aperture size.  相似文献   

8.
Carbon dioxide uptake and water vapour release in plants occur through stomata, which are formed by guard cells. These cells respond to light intensity, CO2 and water availability, and plant hormones. The predicted increase in the atmospheric concentration of CO2 is expected to have a profound effect on our ecosystem. However, many aspects of CO2-dependent stomatal movements are still not understood. Here we show that the ABC transporter AtABCB14 modulates stomatal closure on transition to elevated CO2. Stomatal closure induced by high CO2 levels was accelerated in plants lacking AtABCB14. Apoplastic malate has been suggested to be one of the factors mediating the stomatal response to CO2 (Refs 4,5) and indeed, exogenously applied malate induced a similar AtABCB14-dependent response as high CO2 levels. In isolated epidermal strips that contained only guard cells, malate-dependent stomatal closure was faster in plants lacking the AtABCB14 and slower in AtABCB14-overexpressing plants, than in wild-type plants, indicating that AtABCB14 catalyses the transport of malate from the apoplast into guard cells. Indeed, when AtABCB14 was heterologously expressed in Escherichia coli and HeLa cells, increases in malate transport activity were observed. We therefore suggest that AtABCB14 modulates stomatal movement by transporting malate from the apoplast into guard cells, thereby increasing their osmotic pressure.  相似文献   

9.
10.
Petioles of water‐sufficient intact Vicia faba L. plants were infused with 1 µm abscisic acid (ABA) to simulate the import of root‐source ABA. This protocol permitted quantitative ABA delivery, up to 300 pmol ABA over 60 min, to the leaf without ambiguities associated with perturbations in plant–water status. The ABA concentrations in whole‐leaf samples and in apoplastic sap increased with the amount infused; ABA degradation was not detected. The ABA concentration in apoplastic sap was consistent with uptake of imported ABA into the leaf symplast, but this interpretation is qualified. Our focus was quantitative cellular compartmentation of imported ABA in guard cells. Unlike when leaves are stressed, the guard‐cell symplast ABA content did not increase because of ABA infusion (P = 0·48; 3·0 ± 0·5 versus 4·0 ± 1·2 fg guard‐cell‐pair?1). However, the guard‐cell apoplast ABA content increased linearly (R2 = 0·98) from ?0·2 ± 0·5 to 3·1 ± 1·3 fg guard‐cell‐pair?1 (≈ 3·1 µm ) and was inversely related to leaf conductance (R2 = 0·82). Apparently, xylem ABA accumulates in the guard‐cell wall as a result of evaporation of the apoplast solution. This mechanism provides for integrating transpiration rate and ABA concentration in the xylem solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号