首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Antimicrobial peptides are essential components of innate immunity and are generally thought to act by disrupting the membrane integrity of microbes. Here we report the discovery of two novel chicken -defensins, gallinacin (Gal)-11 and Gal-12, found by hidden Markov model profile searching of the chicken genome. We have sequenced the genes and elucidated the 3UTR of Gal-11. Differential mRNA expression of these novel genes has been shown across a panel of chicken tissues. Gal-11 mRNA was highly expressed in the small intestine, the liver, the gall bladder and the spleen and also showed moderate expression in several other areas of the chicken anatomy, whilst Gal-12 mRNA was found only in the liver and the gall bladder. Antimicrobial activity of synthetic Gal-11 has been demonstrated against a range of bacteria and is predominantly active against the intestinal pathogens Salmonella typhimurium and Listeria monocytogenes.  相似文献   

2.
Antimicrobial peptides (AMPs) are essential components of innate immunity in a range of species from Drosophila to humans and are generally thought to act by disrupting the membrane integrity of microbes. In order to discover novel AMPs in the chicken, we have implemented a bioinformatic approach that involves the clustering of more than 420,000 chicken expressed sequence tags (ESTs). Similarity searching of proteins—predicted to be encoded by these EST clusters—for homology to known AMPs has resulted in the in silico identification of full-length sequences for seven novel gallinacins (Gal-4 to Gal-10), a novel cathelicidin and a novel liver-expressed antimicrobial peptide 2 (LEAP-2) in the chicken. Differential gene expression of these novel genes has been demonstrated across a panel of chicken tissues. An evolutionary analysis of the gallinacin family has detected sites—primarily in the mature AMP—that are under positive selection in these molecules. The functional implications of these results are discussed.  相似文献   

3.
4.
Galectin-1 (Gal-1) is a widely expressed beta-galactoside-binding protein that exerts pleiotropic biological functions. To gain insight into the potential role of Gal-1 as a novel modulator of Leydig cells, we investigated its effect on the growth and death of MA-10 tumor Leydig cells. In this study, we identified cytoplasmic Gal-1 expression in these tumor cells by cytofluorometry. DNA fragmentation, caspase-3, -8, and -9 activation, loss of mitochondrial membrane potential (DeltaPsim), cytochrome c (Cyt c) release, and FasL expression suggested that relatively high concentrations of exogenously added recombinant Gal-1 (rGal-1) induced apoptosis by the mitochondrial and death receptor pathways. These pathways were independently activated, as the presence of the inhibitor of caspase-8 or -9 only partially prevented Gal-1-effect. On the contrary, low concentrations of Gal-1 significantly promoted cell proliferation, without inducing cell death. Importantly, the presence of the disaccharide lactose prevented Gal-1 effects, suggesting the involvement of the carbohydrate recognition domain (CRD). This study provides strong evidence that Gal-1 is a novel biphasic regulator of Leydig tumor cell number, suggesting a novel role for Gal-1 in the reproductive physiopathology.  相似文献   

5.
This study aimed at determining the contribution of intestinal bifidobacteria to the immune system activation using widely distributed galectins as markers of immune cell homoeostasis. In human flora-associated mice, bacteria were enumerated in the gut, blood, spleen, liver and lungs, while the expression of galectin-1 (Gal-1) and galectin-3 (Gal-3) was estimated by PCR in the intestine and real-time quantitative PCR in the other organs. Gal-1 and -3 were rarely expressed in the intestine. In blood, only Gal-1 was expressed while both galectins were expressed in all other organs. A high prevalence of colonic bifidobacteria was associated with a lower expression of both pulmonary galectins, whose levels negatively correlated with bifidobacterial counts. Caecal bifidobacterial counts also negatively correlated with pulmonary Gal-3 mRNA levels. The spleen was the only organ showing an upregulation of Gal-1 expression related to its bacterial contamination. However, this upregulation was only observed when bifidobacteria were not detected in the colon. A putative mechanism explaining the reduced expression of galectins when bifidobacteria highly colonize the mouse intestine could be that, by reducing the bacterial translocation, bifidobacteria also lead to a decreased blood concentration of substances produced by intestinal bacteria.  相似文献   

6.
7.
Apolipoprotein B (APOB) serves an essential role in the assembly and secretion of triglyceride-rich lipoproteins and lipids transport. This study was designed to clone the full-length cDNA of the chicken APOB gene, to characterize the expression profile, and investigate the differential expression between layer and broiler of the chicken APOB gene. The full-length cDNA sequence (14,150-bp) that contained a 13,896-bp ORF encoding 4,631 amino acids was obtained by RT-PCR, RACE, and bioinformatics analysis. qReal-Time PCR analysis showed that the chicken APOB gene was highly expressed in kidney, liver, and intestine. The results of differential expression showed that the APOB gene was more highly expressed in intestine and kidney in Bai'er layer than in broiler, but there was no significant difference in liver between the two breeds. The results of this study provided basic molecular information for studying the role of APOB in the energy transportation in avian species.  相似文献   

8.
Partial acid hydrolysis of the anti-complementary acidic heteroglycan, AAFIIb-3, isolated from the leaves of Artemisia princeps PAMP gave the oligosaccharides Gal-(1→6)-Gal, Gal-(1→6)-Gal-(1→6)-Gal, GalA-(1→4)-Rha, GalA-(1→2)-Rha, GlcA-(1→4)-Gal, GlcA-(1→4)-Rha, GlcA-(1→6)-Gal, and GlcA-(1→4)-Xyl. On methylation of AAFIIb-3 without de-esterification, 4-linked and 3,6-disubstituted galactan, 3-linked galactan, 4-linked galactan, and branched arabinan-rich fragments were obtained. The results of base-catalysed β-elimination indicated that AAFIIb-3 has a backbone consisting of 4-linked GalA and 2-linked Rha to which a highly branched arabino-3,6-galactan and arabino-4-galactan are linked at positions 4 of some 2-linked Rha units. Xyl-(1→4)-GalA, GlcA-(1→4)-Xyl-GalA, and →3)-Gal-(1→4)-GalA might also be joined to other 2-linked Rha at the same position. Some 6-linked and 4-linked Gal were terminated by GlcA.  相似文献   

9.
Mast cells and macrophages in normal C57/BL/6 mice   总被引:8,自引:2,他引:6  
Mast cells and macrophages have an important role in immunity and inflammation. Because mice are used extensively for experimental studies investigating immunological and inflammatory responses, we examined mast cell and macrophage distribution in normal murine tissues. Mast cells were abundant in the murine dermis, tongue, and skeletal muscle but were rarely found in the heart, lung, spleen, kidney, liver, and the bowel mucosa. In contrast, dogs exhibited large numbers of mast cells in the lung parenchyma, liver, and bowel. Some murine dermal mast cells had long cytoplasmic projections filled with granular content. Mouse mast cells demonstrated intense histamine immunoreactivity and were identified with histochemical enzymatic techniques for tryptase and chymase. Macrophages, identified using the monoclonal antibody F4/80, were abundant in the spleen, lung, liver, kidney, and bowel but relatively rare in the heart, tongue, and dermis. Using a nuclease protection assay we investigated mRNA expression of stem cell factor (SCF), a crucial survival factor for mast cells, and the macrophage growth factors macrophage colony stimulating factor (M-CSF) and granulocyte macrophage colony stimulating factor (GM-CSF). Stem cell factor mRNA was highly expressed in the murine lung. Relatively low levels of SCF mRNA expression were found in the tongue and earlobe, which are tissues containing a high number of mast cells. Macrophage CSF and GM-CSF mRNA was highly expressed in the lung and spleen. The murine heart, an organ with a low macrophage content, expressed high levels of M-CSF but negligible levels of GM-CSF mRNA. Constitutive growth factor mRNA expression in murine tissues without significant populations of mast cells and macrophages may suggest an alternative role for these factors in tissue homeostasis.  相似文献   

10.
Galectin (Gal) family members are a type of soluble lectin, and they play important roles in immunomodulation. Their redundant roles have been proposed. We previously found that Gal-1 promotes the formation of Ab-secreting plasma cells, but B cells from Gal-1-deficient and control animals produce comparable amounts of Abs. In the current study, we used synthetic sulfomodified N-acetyllactosamine (LacNAc) analogs and short hairpin RNAs for Gal-8 to demonstrate a redundancy in the effects of Gal-1 and Gal-8 on plasma cell formation. Gal-1 and Gal-8 were both expressed during plasma cell differentiation, and both Gals promoted the formation of plasma cells. Gal-1 and Gal-8 bound better to mature B cells than to plasma cells, and the expression of glycosyltransferase enzymes changed during differentiation, with a decrease in mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetyl-glucosaminyltransferase and N-acetylglucosaminyltransferase-1 mRNAs in plasma cells. Synthetic sulfomodified Galβ1-3GlcNAc disaccharides (type 1 LacNAcs) selectively prevented Gal-8 binding, leading to a blockade of Ab production in Gal-1-deficient B cells. Furthermore, synthetic type 1 LacNAcs that were able to block the binding of both Gals greatly reduced the effect of exogenously added recombinant Gal-1 and Gal-8 on promoting Ab production. These results reveal a novel role for Gal-8 in collaboration with Gal-1 in plasma cell formation, and suggest the possibility of using distinct LacNAc ligands to modulate the function of Gals.  相似文献   

11.
Cytotoxic CD8+ T cells are major players of anti-tumor immune responses, as their functional activity can limit tumor growth and progression. Data show that cytotoxic T cells efficiently control the proliferation of tumor cells through major histocompatibility complex class I-mediated mechanisms; nevertheless, the presence of tumor-infiltrating CD8+ T cells in lesional tissue does not always correlate with better prognosis and increased survival of cancer patients. Similarly, adoptive transfer of tumor-specific cytotoxic T cells has only shown marginal improvement in life spans of patients with metastatic disease. In this report, we discuss experimental evidence showing that expression of tumor-derived galectins, galectin (Gal)-1, Gal-3 and Gal-9, and concomitant presence of their ligands on the surface of anti-tumor immunocytes directly compromise anti-tumor CD8+ T cell immune responses and, perhaps, undermine the promise of adoptive CD8+ T cell immunotherapy. Furthermore, we describe novel strategies designed to counteract Gal-1-, Gal-3- and Gal-9-mediated effects and highlight their targeting potential for creating more effective anti-tumor immune responses. We believe that Gal and their ligands represent an efficacious targeted molecular paradigm that warrants clinical evaluation.  相似文献   

12.
A novel avian β‐defensin (AvBD), AvBD10, was discovered in the liver and bone marrow tissues from Chinese painted quail (Coturnix chinensis) in the present study. The complete nucleotide sequence of quail AvBD10 contains a 207‐bp open reading frame that encodes 68 amino acids. The quail AvBD10 was expressed widely in all the tissues from quails except the tongue, crop, breast muscle, and thymus and was highly expressed in the bone marrow. In contrast to the expression pattern of AvBD10 in tissues from quail, the chicken AvBD10 was expressed in all 21 tissues from the layer hens investigated, with a high level of expression in the kidney, lung, liver, bone marrow, and Harderian glands. Recombinant glutathione S‐transferase (GST)‐tagged AvBD10s of both quail and chicken were produced and purified by expression of the two cDNAs in Escherichia coli, respectively. In addition, peptide according to the respective AvBD10s sequence was synthesized, named synthetic AvBD10s. As expected, both recombinant GST‐tagged AvBD10s and synthetic AvBD10s of quail and chicken exhibited similar bactericidal properties against most bacteria, including Gram‐positive and Gram‐negative forms. However, no significant bactericidal activity was found for quail recombinant GST‐tagged AvBD10 against Salmonella choleraesuis or for chicken recombinant GST‐tagged AvBD10 against Proteus mirabilis. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
14.
Toll-like receptors (TLRs) are members of the cellular receptors that constitute a major component of the evolutionary conserved pattern recognition system (PRR). TLRs are expressed in a wide variety of tissues and cell types. In this study we compared the expression profiles of the chicken TLR1, TLR2 and TLR5 genes in a range of organs (lung, ovary, liver, thymus, duodenum, spleen and large intestine) in commercial Hy-Line (HL) and indigenous Green-legged Partridgelike (GP) chickens. The level of mRNA was determined with RT-qPCR using the TaqMan probes for target and reference (ACTB) genes. We determined that the tissue profiles differed with respect to each TLR and they were ranked as follows: spleen, lungs, large intestine (TLR1), large intestine, lungs, thymus/ovary (TLR2) and lungs, thymus, liver (TLR5). A differential expression between HL and GP chickens was determined for TLR1 and TLR5 genes in large intestine and thymus of HL (P?<?0.05) and GP (P?<?0.05) chickens. We conclude that the commercial chickens expressed higher levels of TLR1 mRNA in large intestine and TLR5 mRNA in thymus than indigenous chickens.  相似文献   

15.
16.
Galectins, a family of mammalian lectins, have emerged as key regulators of the immune response. We previously demonstrated that galectin (Gal)-8, from the tandem-repeat subgroup, exerts two well-defined effects on mouse naive peripheral CD4 T cells: Ag-specific costimulation and Ag-independent proliferation. These stimulatory signals on naive T cells have not been described for any other Gal. Therefore, we investigated whether Gal-1 and Gal-3, two prominent members of the Gal family, share the stimulatory effects exerted by Gal-8 on naive T cells. We found that Gal-1 costimulated Ag-specific T cell responses similarly to Gal-8, as evaluated in the DO11.10 TCR(OVA)-transgenic mouse model, by acting simultaneously on APCs and target CD4 T cells. In contrast, Gal-3 failed to costimulate Ag-specific T cell responses; moreover, it antagonized both Gal-1 and Gal-8 signals. We observed that both Gal-1 and Gal-3 were unable to induce Ag-independent proliferation; however, when two Gal-1 molecules were covalently fused, the resulting chimeric protein efficiently promoted proliferation. This finding indicates that Gal-1 might eventually induce proliferation and, moreover, stresses the requirement of a tandem-repeat structure. Remarkably, a single dose of recombinant Gal-1 or Gal-8 administered together with a suboptimal Ag dose to DO11.10 mice strengthened weak responses in vivo. Taken together, these findings argue for the participation of Gals in the initiation of the immune response and allow the postulation of these lectins as enhancers of borderline Ag responses, thus representing potential adjuvants for vaccine formulations.  相似文献   

17.
On graded hydrolysis and Smith degradation, the O-somatic polysaccharide isolated from Shigella dysenteriae type 9 bacteria, strain NCTC 7919, yielded five oligosaccharides which were characterized. The positions of the O-acetyl and pyruvic acetal groups in the repeating unit were identified. Immunochemical studies indicated that d-galactose is the immunodominant sugar in the polysaccharide, and one of the oligomers, having the structure Gal-(1→3)-GlcNAc-(1→3)-Gal-(1→4)-Man, showed maximum inhibition of the homologous precipitation.  相似文献   

18.
Gal (galectin)-8 is a tandem-repeat Gal containing N-CRDs (Nterminal carbohydrate-recognition domains) and C-CRDs (C-terminal carbohydrate-recognition domains) with differential glycan-binding specificity fused by a linker peptide. Gal-8 has two distinct effects on CD4 T-cells: at high concentrations it induces antigen-independent proliferation, whereas at low concentrations it co-stimulates antigen-specific responses. Associated Gal-8 structural requirements were dissected in the present study. Recombinant homodimers N-N (two N-terminal CRD chimaera) and C-C (two C-terminal CRD chimaera), but not single C-CRDs or N-CRDs, induced proliferation; however, single domains induced co-stimulation. These results indicate that the tandem-repeat structure was essential only for the proliferative effect, suggesting the involvement of lattice formation, whereas co-stimulation could be mediated by agonistic interactions. In both cases, C-C chimaeras displayed higher activity than Gal-8, indicating that the C-CRD was mainly involved, as was further supported by the strong inhibition of proliferation and co-stimulation in the presence of blood group B antigen, specifically recognized by this domain. Classic Gal inhibitors (lactose and thiodigalactoside) prevented proliferation but not co-stimulatory activity, which was inhibited by 3-O-β-D-galactopyranosyl-D-arabinose. Interestingly, Gal-8 induced proliferation of na?ve human CD4 T-cells, varying from non- to high-responder individuals, whereas it promoted cell death of phytohaemagglutinin or CD3/CD28 pre-activated cells. The findings of the present study delineate the differential molecular requirements for Gal-8 activities on T-cells, and suggest a dual activity relying on activation state.  相似文献   

19.
Pattern of chick gene activation in chick erythrocyte heterokaryons   总被引:1,自引:1,他引:0       下载免费PDF全文
The reactivation of chicken erythrocyte nuclei in chick-mammalian heterokaryons resulted in the activation of chick globin gene expression. However, the level of chick globin synthesis was dependent on the mammalian parental cell type. The level of globin synthesis was high in chick erythrocyte-rat L6 myoblast heterokaryons but was 10-fold lower in chick erythrocyte-mouse A9 cell heterokaryons. Heterokaryons between chick erythrocytes and a hybrid cell line between L6 and A9 expressed chick globin at a level similar to that of A9 heterokaryons. Erythrocyte nuclei reactivated in murine NA neuroblastoma, 3T3, BHK and NRK cells, or in chicken fibroblasts expressed less than 5% chick globin compared with the chick erythrocyte-L6 myoblast heterokaryons. The amount of globin expressed in heterokaryons correlated with globin mRNA levels. Hemin increased beta globin synthesis two- to threefold in chick erythrocyte-NA neuroblastoma heterokaryons; however, total globin synthesis was still less than 10% that of L6 heterokaryons. Distinct from the variability in globin expression, chick erythrocyte heterokaryons synthesized chick constitutive polypeptides in similar amounts independent of the mammalian parental cell type. Approximately 40 constitutive chick polypeptides were detected in heterokaryons after immunopurification and two-dimensional gel electrophoresis. The pattern of synthesis of these polypeptides was similar in heterokaryons formed by fusing chicken erythrocytes with rat L6 myoblasts, hamster BHK cells, or mouse neuroblastoma cells. Three polypeptides synthesized by non-erythroid chicken cells but less so by embryonic erythrocytes were conspicuous in heterokaryons. Two abundant erythrocyte polypeptides were insignificant in non-erythroid chicken cells and in heterokaryons.  相似文献   

20.
The epiblast of the chick embryo gives rise to the ectoderm, mesoderm, and endoderm during gastrulation. Previous studies revealed that MyoD-positive cells were present throughout the epiblast, suggesting that skeletal muscle precursors would become incorporated into all three germ layers. The focus of the present study was to examine a variety of organs from the chicken fetus for the presence of myogenic cells. RT-PCR and in situ hybridizations demonstrated that MyoD-positive cells were present in the brain, lung, intestine, kidney, spleen, heart, and liver. When these organs were dissociated and placed in culture, a subpopulation of cells differentiated into skeletal muscle. The G8 antibody was used to label those cells that expressed MyoD in vivo and to follow their fate in vitro. Most, if not all, of the muscle that formed in culture arose from cells that expressed MyoD and G8 in vivo. Practically all of the G8-positive cells from the intestine differentiated after purification by FACS. This population of ectopically located cells appears to be distinct from multipotential stem cells and myofibroblasts. They closely resemble quiescent, stably programmed skeletal myoblasts with the capacity to differentiate when placed in a permissive environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号