首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5α(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (−)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (−)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.  相似文献   

2.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

3.
The purification of (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase from cells of Pseudomonas putida grown with toluene as the sole source of carbon and energy is reported. The molecular weight of the enzyme is 104,000 at pH 9.7. The enzyme is composed of four apparently identical subunits with molecular weights of 27,000. The enzyme is specific for nicotinamide adenine dinucleotide and oxidizes a number of cis-dihydrodiols. Both enantiomers of a racemic mixture of cis-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol are oxidized by the enzyme. No enzymatic activity is observed with trans-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol.  相似文献   

4.
The biotransformation of four different classes of aromatic compounds by the Escherichia coli strain DH5alpha(pTCB 144), which contained the chlorobenzene dioxygenase (CDO) from Pseudomonas sp. strain P51, was examined. CDO oxidized biphenyl as well as monochlorobiphenyls to the corresponding cis-2,3-dihydro-2,3-dihydroxy derivatives, whereby oxidation occurred on the unsubstituted ring. No higher substituted biphenyls were oxidized. The absolute configurations of several monosubstituted cis-benzene dihydrodiols formed by CDO were determined. All had an S configuration at the carbon atom in meta position to the substituent on the benzene nucleus. With one exception, the enantiomeric excess of several 1,4-disubstituted cis-benzene dihydrodiols formed by CDO was higher than that of the products formed by two toluene dioxygenases. Naphthalene was oxidized to enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. All absolute configurations were identical to those of the products formed by toluene dioxygenases of Pseudomonas putida UV4 and P. putida F39/D. The formation rate of (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene was significantly higher (about 45 to 200%) than those of several monosubstituted cis-benzene dihydrodiols and more than four times higher than the formation rate of cis-benzene dihydrodiol. A new gas chromatographic method was developed to determine the enantiomeric excess of the oxidation products.  相似文献   

5.
The nucleotide sequence of the todC1C2BADE genes which encode the first three enzymes in the catabolism of toluene by Pseudomonas putida F1 was determined. The genes encode the three components of the toluene dioxygenase enzyme system: reductaseTOL (todA), ferredoxinTOL (todB), and the two subunits of the terminal dioxygenase (todC1C2); (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (todD); and 3-methylcatechol 2,3-dioxygenase (todE). Knowledge of the nucleotide sequence of the tod genes was used to construct clones of Escherichia coli JM109 that overproduce toluene dioxygenase (JM109(pDT-601]; toluene dioxygenase and (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (JM109(pDTG602]; and toluene dioxygenase, (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase, and 3-methylcatechol 2,3-dioxygenase (JM109(pDTG603]. The overexpression of the tod-C1C2BADE gene products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three E. coli JM109 strains harboring the plasmids pDTG601, pDTG602, and pDTG603, after induction with isopropyl-beta-D-thiogalactopyranoside, oxidized toluene to (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene, 3-methylcatechol, and 2-hydroxy-6-oxo-2,4-heptadienoate, respectively. The tod-C1C2BAD genes show significant homology to the reported nucleotide sequence for benzene dioxygenase and cis-1,2-dihydroxycyclohexa-3,5-diene dehydrogenase from P. putida 136R-3 (Irie, S., Doi, S., Yorifuji, T., Takagi, M., and Yano, K. (1987) J. Bacteriol. 169, 5174-5179). In addition, significant homology was observed between the nucleotide sequences for the todDE genes and the sequences reported for cis-1,2-dihydroxy-6-phenylcyclohexa-3,5-diene dehydrogenase and 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Furukawa, K., Arimura, N., and Miyazaki, T. (1987) J. Bacteriol. 169, 427-429).  相似文献   

6.
Metabolism of dibenzothiophene by a Beijerinckia species.   总被引:9,自引:8,他引:1       下载免费PDF全文
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

7.
Metabolism of dibenzothiophene by a Beijerinckia species   总被引:9,自引:0,他引:9  
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

8.
Bacterial and fungal oxidation of dibenzofuran.   总被引:16,自引:0,他引:16       下载免费PDF全文
Cunninghamella elegans and a mutant strain (B8/36) of Beijerinckia both oxidized dibenzofuran to 2,3-dihydroxy-2,3-dihydrodibenzofuran. The bacterial metabolite was extremely unstable and, in the presence of acid, was rapidly converted into a mixture of 2- and 3-hydroxydibenzofuran. In contrast, the 2,3-dihydroxy-2,3-dihydrodibenzofuran formed by C. elegans was stable and only yielded 2- and 3-hydroxydibenzofuran when heated under acidic conditions. The results suggest that Beijerinckia B8/36 and C. elegans form the respective cis- and trans-isomers of 2,3-dihydroxy-2,3-dihydrodibenzofuran. C. elegans also oxidized dibenzofuran to 2- and 3-hydroxydibenzofuran under conditions that would not lead to the dehydration of the trans-dihydrodiol. These observations implicate the initial formation of dibenzofuran- 2,3-epoxide in the fungal oxidation of dibenzofuran. Beijerinckia B8/36 also produced a second unstable dihydrodiol that was tentatively identified as cis-1,2-dihydroxy-1,2-dihydrodibenzofuran. This compound gave 2-hydroxydibenzofuran as the major dehydration product and the cis relative stereochemistry was suggested by the isolation and characterization of an isopropylidine derivative. A preparation of cis-naphthalene dihydrodiol dehydrogenase and cell extracts of the parent strain of Beijerinckia oxidized both bacterial dihydrodiols to catechols. Cell extracts prepared from C. elegans catalysed an analogous oxidation of trans-2,3-dihydroxy-2,3-dihydrodibenzofuran to 2,3-dihydroxydibenzofuran. The latter product was also isolated and identified from culture filtrates. The results suggest that bacteria and fungi utilize different mechanisms to initiate the oxidation of dibenzofuran.  相似文献   

9.
Bacterial strains expressing toluene and naphthalene dioxygenase were used to examine the sequence of reactions involved in the oxidation of 1,2-dihydronaphthalene. Toluene dioxygenase of Pseudomonas putida F39/D oxidizes 1,2-dihydronaphthalene to (+)-cis-(1S,2R)-dihydroxy-1,2,3,4-tetrahydronaphthalene, (+)-(1R)-hydroxy-1,2-dihydronaphthalene, and (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, naphthalene dioxygenase of Pseudomonas sp. strain NCIB 9816/11 oxidizes 1,2-dihydronaphthalene to the opposite enantiomer, (-)-cis-(1R,2S)-dihydroxy-1,2,3,4-tetrahydronaphthalene and the identical (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. Recombinant Escherichia coli strains expressing the structural genes for toluene and naphthalene dioxygenases confirmed the involvement of these enzymes in the reactions catalyzed by strains F39/D and NCIB 9816/11. 1-Hydroxy-1,2-dihydronaphthalene was not formed by strains expressing naphthalene dioxygenase. These results coupled with time course studies and deuterium labelling experiments indicate that, in addition to direct dioxygenation of the olefin, both enzymes have the ability to desaturate (dehydrogenate) 1,2-dihydronaphthalene to naphthalene, which serves as a substrate for cis dihydroxylation.  相似文献   

10.
The fungus Cunninghamella elegans oxidized anthracene and phenanthrene to form predominately trans-dihydrodiols. The metabolites were isolated by reversed-phase high-pressure liquid chromatography for structural and conformational analyses. Comparison of the circular dichroism spectrum of the fungal trans-1,2-dihydroxy-1,2-dihydroanthracene to that formed by rat liver microsomes indicated that the major enantiomer of the trans-1,2-dihydroxy-1,2-dihydroanthracene formed by C. elegans had an S,S absolute stereochemistry, which is opposite to the predominately 1R,2R dihydrodiol formed by rat liver microsomes. C. elegans oxidized phenanthrene primarily in the 1,2-positions to form trans-1,2-dihydroxy-1,2-dihydrophenanthrene. In addition, a minor amount of trans-3,4-dihydroxy-3,4-dihydrophenanthrene was detected. Metabolism at the K-region (9,10-positions) of phenanthrene was not detected. Comparison of the circular dichroism spectra of the phenanthrene trans-1,2- and trans-3,4-dihydrodiols formed by C. elegans to those formed by mammalian enzymes indicated that each of the dihydrodiols formed by C. elegans had an S,S absolute configuration. The results indicate that there are differences in both the regio- and stereoselective metabolism of anthracene and phenanthrene between the fungus C. elegans and rat liver microsomes.  相似文献   

11.
Initial reactions in the oxidation of naphthalene by Pseudomonas putida.   总被引:31,自引:0,他引:31  
A strain of Pseudomonas putida that can utilize naphthalene as its sole source of carbon and energy was isolated from soil. A mutant strain of this organism, P. putida 119, when grown on glucose in the presence of naphthalene, accumulates optically pure (+)-cis-1(R),2(S)-dihydroxy-1,2-dihydronaphthalene in the culture medium. The cis relative stereochemistry in this molecule was established by nuclear magnetic resonance spectrometry. Radiochemical trapping experiments established that this cis dihydrodiol is an intermediate in the metabolism of naphthalene by P. Fluorescens (formerly ATCC, 17483), P. putida (ATCC, 17484), and a Pseudomonas species (NCIB 9816), as well as the parent strain of P. putida described in this report. Formation of the cis dihydrodiol is catalyzed by a dioxygenase which requires either NADH or NADPH as an electron donor. A double label procedure is described for determining the origin of oxygen in the cis dihydrodiol under conditions where this metabolite would not normally accumulate. Several aromatic hydrocarbons are oxidized by cell extracts prepared from naphthalene-grown cells of P. putida. The cis dihydrodiol is converted to 1,2-dihydroxynaphthalene by an NAD+-dependent dehydrogenase. This enzyme is specific for the (+) isomer of the dihydrodiol and shows a primary isotope effect when the dihydrodiol is substituted at C-2 with deuterium.  相似文献   

12.
The regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene was examined with mutant and recombinant strains expressing naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. The initial oxidation products were isolated and identified by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry. Salicylate-induced cells of Pseudomonas sp. strain 9816/11 and isopropyl-beta-D-thiogalactopyranoside-induced cells of Escherichia coli JM109(DE3)(pDTG141) oxidized fluorene to (+)-(3S,4R)-cis-3,4-dihydroxy-3,4-dihydrofluorene (80 to 90% relative yield; > 95% enantiomeric excess [ee]) and 9-fluorenol (< 10% yield). The same cells oxidized dibenzofuran to (1R,2S)-cis-1,2-dihydroxy-1, 2-dihydrodibenzofuran (60 to 70% yield; > 95% ee) and (3S,4R)-cis-3, 4-dihydroxy-3,4-dihydrodibenzofuran (30 to 40% yield; > 95% ee). Induced cells of both strains, as well as the purified dioxygenase, also oxidized dibenzothiophene to (+)-(1R,2S)-cis-1,2-dihydroxy-1, 2-dihydrodibenzothiophene (84 to 87% yield; > 95% ee) and dibenzothiophene sulfoxide (< 15% yield). The major reaction catalyzed by naphthalene dioxygenase with each substrate was stereospecific dihydroxylation in which the cis-dihydrodiols were of identical regiochemistry and of R configuration at the benzylic center adjacent to the bridgehead carbon atom. The regiospecific oxidation of dibenzofuran differed from that of the other substrates in that a significant amount of the minor cis-3,4-dihydrodiol regioisomer was formed. The results indicate that although the absolute stereochemistry of the cis-diene diols was the same, the nature of the bridging atom or heteroatom influenced the regiospecificity of the reactions catalyzed by naphthalene dioxygenase.  相似文献   

13.
Initial reactions involved in the bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) include a ring-dihydroxylation catalyzed by a dioxygenase and a subsequent oxidation of the dihydrodiol products by a dehydrogenase. In this study, the dihydrodiol dehydrogenase from the PAH-degrading Sphingomonas strain CHY-1 has been characterized. The bphB gene encoding PAH dihydrodiol dehydrogenase (PDDH) was cloned and overexpressed as a His-tagged protein. The recombinant protein was purified as a homotetramer with an apparent Mr of 110,000. PDDH oxidized the cis-dihydrodiols derived from biphenyl and eight polycyclic hydrocarbons, including chrysene, benz[a]anthracene, and benzo[a]pyrene, to corresponding catechols. Remarkably, the enzyme oxidized pyrene 4,5-dihydrodiol, whereas pyrene is not metabolized by strain CHY-1. The PAH catechols produced by PDDH rapidly auto-oxidized in air but were regenerated upon reaction of the o-quinones formed with NADH. Kinetic analyses performed under anoxic conditions revealed that the enzyme efficiently utilized two- to four-ring dihydrodiols, with Km values in the range of 1.4 to 7.1 microM, and exhibited a much higher Michaelis constant for NAD+ (Km of 160 microM). At pH 7.0, the specificity constant ranged from (1.3 +/- 0.1) x 10(6) M(-1) s(-1) with benz[a]anthracene 1,2-dihydrodiol to (20.0 +/- 0.8) x 10(6) M(-1) s(-1) with naphthalene 1,2-dihydrodiol. The catalytic activity of the enzyme was 13-fold higher at pH 9.5. PDDH was subjected to inhibition by NADH and by 3,4-dihydroxyphenanthrene, and the inhibition patterns suggested that the mechanism of the reaction was ordered Bi Bi. The regulation of PDDH activity appears as a means to prevent the accumulation of PAH catechols in bacterial cells.  相似文献   

14.
The homogeneous 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) of rat liver cytosol is indistinguishable from dihydrodiol dehydrogenase (trans-1,2-dihydrobenzene-1,2-diol dehydrogenase EC 1.3.1.20), Penning, T. M., Mukharji, I., Barrows, S., and Talalay, P. (1984) Biochem. J. 222, 601-611). Examination of the substrate specificity of the purified dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons indicates that the enzyme will catalyze the NAD(P)-dependent oxidation of trans-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, 5-methylchrysene, and benzo[a]pyrene under physiological conditions. Comparison of the utilization ratios Vmax/Km indicates that benzenedihydrodiol and the trans-1,2- and trans-7,8-dihydrodiols of 5-methylchrysene were most efficiently oxidized by the purified dehydrogenase, followed by the trans-7,8-dihydrodiol of benzo[a]pyrene and the trans-1,2-dihydrodiols of phenanthrene, chrysene, and naphthalene. The purified enzyme appears to display rigid regio-selectivity, since it will readily oxidize non-K-region trans-dihydrodiols but will not oxidize the K-region trans-dihydrodiols of phenanthrene and benzo[a]pyrene. The stereochemical course of enzymatic dehydrogenation was investigated by circular dichroism spectrometry. For the trans-1,2-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, and 5-methylchrysene, the dehydrogenase preferentially oxidized the (+)-[S,S]-isomer. Apparent inversion of this stereochemical preference occurred with the trans-7,8-dihydrodiol of 5-methylchrysene, as the (-)-enantiomer was preferentially oxidized. No change in the sign of the Cotton Effect was observed following oxidation of the racemic trans-7,8-dihydrodiol of benzo[a]pyrene, suggesting that both stereoisomers of this compound were substrates. Large-scale incubation of the [3H]-(+/-)-trans-7,8-dihydrodiol of benzo[a]pyrene with the purified dehydrogenase resulted in greater than 90% utilization of this potent proximate carcinogen, suggesting that the enzyme utilizes both the (-)-[R,R] and the (+)-[S,S]-stereoisomers, which confirms the circular dichroism result. These data show that dihydrodiol dehydrogenase displays the appropriate regio- and stereospecificity to catalyze the oxidation of both the major and minor non-K-region trans-dihydrodiols that arise from the microsomal metabolism of benzo[a]pyrene in vivo.  相似文献   

15.
Pseudomonas putida 39/D oxidized p-xylene to cis-3,6-dimethyl-3,5-cyclohexadiene-1,2-diol (cis-p-xylene dihydrodiol). The latter compound was isolated in crystalline form and its physical properties were determined. The cis configuration of the hydroxyl groups in the oxidation product was inferred from its ability to form an isopropylidene derivative with 2,2-dimethoxypropane. Acid treatment of cis-p-xylene dihydrodiol resulted in the formation of 2,5-dimethylphenol. A partially purified preparation of cis-toluene dihydrodiol dehydrogenase oxidized cis-p-xylene dihydrodiol to 1,2-dihydroxy-3,6-dimethylbenzene (3,6-dimethylpyrocatechol). P. putida 39/D oxidized m-xylene to a compound whose spectral and chromatographic characteristics were consistent with the structure 3,5-dimethyl-3,5-cyclohexadiene-1,2-diol. This product was very unstable, and all attempts to isolate it led to the formation of 2,4-dimethylphenol.  相似文献   

16.
Metabolism of 3H-labeled (+)-(S,S)- and (-)-(R,R)-1,2-dihydrodiols of triphenylene by rat liver microsomes and 11 purified isozymes of cytochrome P450 in a reconstituted monooxygenase system has been examined. Although both enantiomers were metabolized at comparable rates, the distribution of metabolites between phenolic dihydrodiols and bay-region, 1,2-diol 3,4-epoxide diastereomers varied substantially with the different systems. Treatment of rats with phenobarbital (PB) or 3-methylcholanthrene (MC) caused a slight reduction or less than a twofold increase, respectively, in the rate of total metabolism (per nanomole of cytochrome P450) of the enantiomeric dihydrodiols compared to microsomes from control rats. Among the 11 isozymes of cytochrome P450 tested, only cytochromes P450c (P450IA1) and P450d (P450IA2) had significant catalytic activity. With either enantiomer of triphenylene 1,2-dihydrodiol, both purified cytochrome P450c (P450IA1) and liver microsomes from MC-treated rats formed diol epoxides and phenolic dihydrodiols in approximately equal amounts. Purifed cytochrome P450d (P450IA2), however, formed bay-region diol epoxides and phenolic dihydrodiols in an 80:20 ratio. Interestingly, liver microsomes from control or PB-treated rats produced only diol epoxides and little or no phenolic dihydrodiols. The diol epoxide diastereomers differ in that the epoxide oxygen is either cis (diol epoxide-1) or trans (diol epoxide-2) to the benzylic 1-hydroxyl group. With either purified cytochromes P450 (isozymes c or d) or liver microsomes from MC-treated rats, diol epoxide-2 is favored over diol epoxide-1 by at least 4:1 when the (-)-enantiomer is the substrate, while diol epoxide-1 is favored by at least 5:1 when the (+)- enantiomer is the substrate. In contrast, with liver microsomes from control or PB-treated rats, formation of diol epoxide-1 relative to diol epoxide-2 was favored by at least 2:1 regardless of the substrate enantiomer metabolized. This is the first instance where the ratio of diol epoxide-1/diol epoxide-2 metabolites is independent of the dihydrodiol enantiomer metabolized. Experiments with antibodies indicate that a large percentage of the metabolism by microsomes from control and PB-treated rats is catalyzed by cytochrome P450p (P450IIIA1), resulting in the altered stereoselectivity of these microsomes compared to that of the liver microsomes from MC-treated rats.  相似文献   

17.
Rat liver dihydrodiol dehydrogenase (DDH, E.C. 1.3.1.20) has recently been shown to oxidize the highly carcinogenic benz[a]anthracene-3,4- dihydrodiol in an NADP(+)-dependent reaction to its corresponding catechol. The present study is a systematic investigation of the substrate specificity of the purified enzyme towards synthetic trans-dihydrodiol metabolites of phenanthrene, benz[a]anthracene, chrysene, dibenz[a, h]anthracene and benzo[a]pyrene. DDH exhibited a remarkable regiospecificity of enzymatic catalysis with regard to the site of the dihydrodiol moiety of the parent hydrocarbon. M-region- and, with lower efficiency, bay-region dihydrodiols were found to be good substrates of the enzyme with maximal velocities between 20-80 nmol/min per mg enzyme and Km values in the micromolar range. K-region dihydrodiols were not accepted as substrates. Dihydrodiols situated at the terminal ring of an anthracene-type structure such as benz[a]anthracene-8,9-dihydrodiol as well as the corresponding dihydrodiol epoxides were also not oxidized by DDH at measurable rates. The results provide evidence for a detoxifying role of DDH in the metabolism of the chemical carcinogens benz[a]anthracene, chrysene and dibenz[a, h]anthracene.  相似文献   

18.
Homogeneous 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase from rat liver cytosol catalyzes the NAD(P)+-dependent oxidation of non-K-region trans-dihydrodiols of polycyclic aromatic hydrocarbons, many of which are proximate carcinogens. These reactions proceed with Km values in the millimolar range to yield highly reactive o-quinones that can be trapped as thioether adducts [Smithgall, T. E., Harvey, R. G., & Penning, T. M. (1988) J. Biol. Chem. 263, 1814-1820]. The enzymatically generated o-quinones, e.g., naphthalene-1,2-dione and benzo[a]pyrene-7,8-dione are potent inhibitors of the dehydrogenase, yielding IC50 values of 5.0 and 10.0 microM, respectively. Naphthalene-1,2-dione was found to be an efficient irreversible inhibitor of the enzyme and can inactivate equimolar concentrations of the dehydrogenase, yielding a t 1/2 for the enzyme of 10 s or less. By contrast (+/-)-trans-1,2-dihydroxy-1,2-dihydronaphthalene promotes a slower inactivation of the dehydrogenase, yielding a Kd of 70 microM and a limiting rate constant that corresponds to a t 1/2 at saturation of 23.2 min. Inactivation by this dihydrodiol has an obligatory requirement for NADP+. Examination of the kcat for the oxidation of (+/-)-trans-1,2-dihydroxy-1,2-dihydronaphthalene yields a partition ratio for the dihydrodiol of 200,000, suggesting that alkylation from the parent dihydrodiol is a rare occurrence. Benzo[a]pyrene-7,8-dione, which is the product of the enzymatic oxidation of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, also promotes a time- and concentration-dependent inactivation of the dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The homogeneous dihydrodiol dehydrogenase of rat liver cytosol catalyzes the NADP-dependent oxidation of polycyclic aromatic trans-dihydrodiols, a reaction that may suppress their carcinogenicity provided the products of the reaction are noncarcinogenic. This report demonstrates that the products of naphthalene and benzo[a]pyrene trans-dihydrodiol oxidation are electrophilic o-quinones, which arise via autoxidation of catechols produced from the dihydrodiols by the action of dihydrodiol dehydrogenase. Oxidation of the trans-1,2-dihydrodiol of naphthalene or the 7,8-dihydrodiol of benzo[a]pyrene by the homogeneous rat liver dehydrogenase in 50 mM glycine at pH 9.0 led to the formation of multiple products by TLC, none of which co-migrated with the corresponding o-quinone standards. An identical result was obtained when these standards were incubated with buffer alone, suggesting that o-quinones were formed enzymatically from the dihydrodiols, and then underwent addition reactions with the glycine buffer. In subsequent reactions, the o-quinones formed from the enzymatic oxidation of the trans-dihydrodiols of naphthalene and benzo[a]pyrene were trapped by conducting the reactions in phosphate buffer containing 2-mercaptoethanol. The products of these reactions were identified by 500 MHz nmr and electron impact mass spectrometry as adducts of the 1,2-quinone of naphthalene (m/e M+ = 234) and the 7,8-quinone of benzo[a]pyrene (m/e M+ = 358), which contained mercaptoethanol as a thioether at C-4 and C-10, respectively. Kinetic analysis of the reactivity of the 1,2-quinone of naphthalene showed that the cellular nucleophiles, cysteine and glutathione, react very rapidly with the quinone. The 7,8-quinone of benzo[a]pyrene also reacted with glutathione and cysteine to form water-soluble metabolites, but did not react with adenosine or guanosine. These results suggest that o-quinones formed by enzymatic dihydrodiol oxidation may be effectively scavenged by cellular nucleophiles, resulting in their detoxification.  相似文献   

20.
Indene is oxidized to mixtures of cis- and trans-indandiols and related metabolites by Pseudomonas putida and Rhodococcus sp. isolates. Indene metabolism is consistent with monooxygenase and dioxygenase activity. P. putida resolves enantiomeric mixtures of cis-1,2-indandiol by further selective oxidation of the 1R, 2S-enantiomer yielding high enantiomeric purity of cis-(1S, 2R)-indandiol, a potential intermediate in the synthesis of indinavir sulfate (CRIXIVAN), a protease inhibitor used in the treatment of AIDS. Molecular cloning of P. putida toluene dioxygenase in Escherichia coli confirmed the requirement for the dihydrodiol dehydrogenase in resolving racemic mixtures of cis-indandiol. Rhodococcus sp. isolates convert indene to cis-(1S, 2R)-indandiol at high initial enantiomeric excess and one isolate also produces trans-(1R, 2R)-indandiol, suggesting the presence of monooxygenase activity. Scale up and optimization of the bioconversions to these key synthons for chiral synthesis of potential intermediates for commercial manufacture of indinavir sulfate are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号