首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to maintain adequate gas exchange depends on the relatively homogeneous distribution of inhaled gas throughout the lung. Structural alterations associated with many respiratory diseases may significantly depress this function during tidal breathing. These alterations frequently occur in a heterogeneous manner due to complex, emergent interactions among the many constitutive elements of the airways and parenchyma, resulting in unique signature changes in the mechanical impedance spectrum of the lungs and total respiratory system as measured by forced oscillations techniques (FOT). When such impedance spectra are characterized by appropriate inverse models, one may obtain functional insight into derangements in global respiratory mechanics. In this review, we provide an overview of the impact of structural heterogeneity with respect to dynamic lung function. Recent studies linking functional impedance measurements to the structural heterogeneity observed in acute lung injury, asthma, and chronic obstructive pulmonary disease are highlighted, as well as current approaches for the modeling and interpretation of impedance. Finally, we discuss the potential diagnostic role of FOT in the context of therapeutic interventions.  相似文献   

2.
A computer model of the mechanical properties of the dog respiratory system based on the asymmetrically branching airway model of Horsfield et al. (11) is described. The peripheral ends of this airway model were terminated by a lumped-parameter impedance representing gas compression in the alveoli, and lung and chest wall tissue properties were derived from measurements made in this laboratory. Using this model we predicted the respiratory system impedance and the distribution of pressures along the airways in the dog lung. Predicted total respiratory system impedances for frequencies between 4 and 64 Hz at three lung volumes were found to compare quite closely to measured impedances in dogs. Serial pressure distributions were found to be frequency-dependent and to result in higher pressures in the lung periphery than at the airway opening at some frequencies. The implications of this finding for high-frequency ventilation are discussed.  相似文献   

3.
Interactive learning has been proven instrumental for the understanding of complex systems where the interaction of interdependent components is hard to envision. Due to the mechanical properties and mutual coupling of the lung and thorax, respiratory mechanics represent such a complex system, yet their understanding is essential for the diagnosis, prognosis, and treatment of various respiratory disorders. Here, we present a new mechanical model that allows for the simulation of respiratory pressure and volume changes in different ventilation modes. A bellow reflecting the "lung" is positioned within the inverted glass cylinder of a bell spirometer, which is sealed by a water lock and reflects the "thorax." A counterweight attached to springs representing the elastic properties of the chest wall lifts the glass cylinder, thus creating negative "pleural" pressure inside the cylinder and inflating the bellow. Lung volume changes as well as pleural and intrapulmonary pressures are monitored during simulations of spontaneous ventilation, forced expiration, and mechanical ventilation, allowing for construction of respiratory pressure-volume curves. The mechanical model allows for simulation of respiratory pressure changes during different ventilation modes. Individual relaxation curves constructed for the lung and thorax reflect the basic physiological characteristics of the respiratory system. In self-assessment, 232 medical students passing the physiology laboratory course rated that interactive teaching at the simulation model increased their understanding of respiratory mechanics by 70% despite extensive prior didactic teaching. Hence, the newly developed simulation model fosters students' comprehension of complex mechanical interactions and may advance the understanding of respiratory physiology.  相似文献   

4.
The simultaneous assessment of glottal dynamics and larynx position can be beneficial for the diagnosis of disordered voice or speech production and swallowing. Up to now, methods either concentrate on assessment of the glottis opening using optical, acoustical or electrical (electroglottography, EGG) methods, or on visualisation of the larynx position using ultrasound, computer tomography or magnetic resonance imaging techniques.The method presented here makes use of a time-multiplex measurement approach of space-resolved transfer impedances through the larynx. The fast sequence of measurements allows a quasi simultaneous assessment of both larynx position and EGG signal using up to 32 transmit–receive signal paths. The system assesses the dynamic opening status of the glottis as well as the vertical and back/forward motion of the larynx.Two electrode-arrays are used for the measurement of the electrical transfer impedance through the neck in different directions. From the acquired data the global and individual conductivity is calculated as well as a 2D point spatial representation of the minimum impedance.The position information is shown together with classical EGG signals allowing a synchronous visual assessment of glottal area and larynx position. A first application to singing voice analysis is presented that indicate a high potential of the method for use as a non-invasive tool in the diagnosis of voice, speech, and swallowing disorders.  相似文献   

5.
Measuring lung function in mice: the phenotyping uncertainty principle.   总被引:6,自引:0,他引:6  
Measuring lung function in mice is essential for establishing the relevance of murine models to human lung disease. However, making such measurements presents particular technical challenges due to the small size of the animal, particularly with regard to the measurement of respiratory flows. In this review, we examine the various methods currently available for assessment of lung function in mice and contrast them in terms of a concept we call the phenotyping uncertainty principle; each method can be considered to lie somewhere along a continuum on which noninvasiveness must be traded off against experimental control and measurement precision. Unrestrained plethysmography in conscious mice represents the extreme of noninvasiveness and is highly convenient but provides respiratory measures that are so tenuously linked to respiratory mechanics that they cannot be considered as meaningful indicators of lung function. At the other extreme, the measurement of input impedance in anesthetized, paralyzed, tracheostomized mice is precise and specific but requires that an animal be studied under conditions far from natural. In between these two extremes lie methods that sacrifice some precision for a reduction in the level of invasiveness, a promising example being the measurement of transfer impedance in conscious, restrained mice. No method is optimal in all regards; therefore, the appropriate technique to use depends on the application.  相似文献   

6.
In the chicken embryo, pulmonary ventilation and pulmonary gas exchange begin approximately one day before the completion of hatching. We asked to what extent the posture inside the egg, and the presence of the eggshell and membranes, may alter the mechanical behaviour of the respiratory system. The passive mechanical properties of the respiratory system were studied in chicken embryos during the internal pipping phase (rupture of the air cell) or the external pipping phase (hole in the eggshell). Tracheal pressure and changes in lung volume were recorded during mechanical ventilation, first, with the embryo curled up inside the egg, then again after exteriorization from the eggshell. In the internal pippers, respiratory system compliance increased and expiratory resistance decreased after exteriorization, whereas the mean inspiratory impedance did not change. In the external pippers, exteriorization had no significant effects on respiratory compliance, resistance, or impedance, and the values were similar to those of newly hatched chicks. We conclude that, in the chicken embryo, at a time when pulmonary ventilation becomes an important mechanism for gas exchange, the curled up posture inside the egg does not provide any significant mechanical constraint to breathing.  相似文献   

7.
This report concerns the inference of geometric and mechanical airway characteristics based on information derived from a single transient planar wave recorded at the airway opening. We describe a new method to simultaneously measure upper airway area and respiratory input impedance by performing dual analysis of a single pressure wave. The algorithms required to reconstruct airway dimensions and mechanical characteristics were developed, implemented, and tested with reference to known physical models. Our method appears suitable to estimate, even under severe intensive care unit conditions, the respiratory system frequency response (above 10 Hz) in intubated patients and the patency of the endotracheal tube used to connect the patients to the ventilator.  相似文献   

8.

Background  

The pressure-volume curve of the respiratory system is a tool to monitor and set mechanical ventilation in acute lung injury. Mathematical models of the static pressure-volume curve of the respiratory system have been proposed to overcome the inter- and intra-observer variability derived from eye-fitting. However, different models have not been compared.  相似文献   

9.
The series and shunt components of the impedance of the upper airway (Zuaw) were evaluated from measurements obtained during a Valsalva maneuver by means of a modified forced oscillation technique. When the cheeks are supported, the upper airway can be represented by a single distributed transmission line. The homogeneity of this line was confirmed by measuring separately Zuaw and the impedance of the mouth. Correction of the impedance of the respiratory system, determined by means of the forced oscillations technique, for the shunt properties of Zuaw results in some modifications of the frequency dependence of resistance (Rrs) in healthy adults and in marked changes of the absolute values of Rrs in children and in patients with obstructive lung disease.  相似文献   

10.
Invasive lung function measurements are useful tools to describe respiratory disease models in mice but only result in one time-point measurements because of tracheostomy. We explored if intubation may overcome the need for tracheostomy thereby allowing invasive lung function monitoring of individual mice over time. Repeated invasive lung function measurements with Scireq(?) - FlexiVent or Buxco(?) - Forced Pulmonary Maneuvers(?) were performed three times in BALB/c mice with intervals of 10 days. Each lung function assessment following intubation was compared with a similar measurement in age-matched tracheostomized mice, the golden standard in lung function measurements. Tracheostomy and intubation gave similar results for resistance, elastance and compliance of the whole respiratory system as assessed by Flexivent. Likewise, Forced Pulmonary Maneuvers used to measure lung volumes such as total lung capacity, functional residual capacity, forced expiratory volume in 0.1 s and forced vital capacity, resulted in identical outcomes for both airway approaches. No interaction was found between the procedures for any of the pulmonary function variables. The observed changes over time were rather related to animal growth than to repetitive intubation. Eighty percent of the animals survived three consecutive intubations, which were hampered by transient breathing difficulties, weight loss and neutrophilic bronchoalveolar lavage immediately postextubation. Repetitive invasive lung function measurements by intubation are feasible and reproducible in healthy mice and results are comparable to the standard method. This may open new perspectives for longitudinal research in animal models of respiratory diseases.  相似文献   

11.

Background  

Pseudomonas aeruginosa, an opportunistic pathogen, is often encountered in chronic lung diseases such as cystic fibrosis or chronic obstructive pneumonia, as well as acute settings like mechanical ventilation acquired pneumonia or neutropenic patients. It is a major cause of mortality and morbidity in these diseases. In lungs, P. aeruginosa settles in a biofilm mode of growth with the secretion of exopolysaccharides in which it is encapsulated, enhancing its antibiotic resistance and contributing to the respiratory deficiency of patients. However, bacteria must first multiply to a high density and display a cytotoxic phenotype to avoid the host's defences. A virulence determinant implicated in this step of infection is the type III secretion system (TTSS), allowing toxin injection directly into host cells. At the beginning of the infection, most strains isolated from patients' lungs possess an inducible TTSS allowing toxins injection or secretion upon in vivo or in vitro activation signals. As the infection persists most of the bacteria permanently loose this capacity, although no mutations have been evidenced. We name "non inducible" this phenotype. As suggested by the presence of a positive feedback circuit in the regulatory network controlling TTSS expression, it may be due to an epigenetic switch allowing heritable phenotypic modifications without genotype's mutations.  相似文献   

12.
13.
After tobacco, marijuana is the most widely smoked substance in our society. Studies conducted within the past 15 years in animals, isolated tissues, and humans indicate that marijuana smoke can injure the lungs. Habitual smoking of marijuana has been shown to be associated with chronic respiratory tract symptoms, an increased frequency of acute bronchitic episodes, extensive tracheobronchial epithelial disease, and abnormalities in the structure and function of alveolar macrophages, key cells in the lungs'' immune defense system. In addition, the available evidence strongly suggests that regularly smoking marijuana may predispose to the development of cancer of the respiratory tract. "Crack" smoking has become increasingly prevalent in our society, especially among habitual smokers of marijuana. New evidence is emerging implicating smoked cocaine as a cause of acute respiratory tract symptoms, lung dysfunction, and, in some cases, serious, life-threatening acute lung injury. A strong physician message to users of marijuana, cocaine, or both concerning the harmful effects of these smoked substances on the lungs and other organs may persuade some of them, especially those with drug-related respiratory complications, to quit smoking.  相似文献   

14.
In six spontaneously breathing anesthetized dogs (pentobarbital sodium, 30 mg/kg) airflow, volume, and tracheal and esophageal pressures were measured. The active and passive mechanical properties of the total respiratory system, lung, and chest wall were calculated. The average passive values of respiratory system, lung, and chest wall elastances amounted to, respectively, 50.1, 32.3, and 17.7 cmH2O X l-1. Resistive pressure-vs.-flow relationships for the relaxed respiratory system, lung, and chest wall were also determined; a linear relationship was found for the former (the total passive intrinsic resistance averaged 4.1 cmH2O X l-1 X s), whereas power functions best described the others: the pulmonary pressure-flow relationship exhibited an upward concavity, which for the chest wall presented an upward convexity. The average active elastance and resistance of the respiratory system were, respectively, 64.0 cmH2O X l-1 and 5.4 cmH2O X l-1 X s. The greater active impedance reflects pressure losses due to force-length and force-velocity properties of the inspiratory muscles and those due to distortion of the respiratory system from its relaxed configuration.  相似文献   

15.
The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel inhomogeneities from normal viscoelastic properties of the respiratory tissues.  相似文献   

16.
Preterm newborn infants may develop respiratory distress syndrome (RDS) due to functional and structural immaturity. A lack of surfactant promotes collapse of alveolar regions and airways such that newborns with RDS are subject to increased inspiratory effort and non-homogeneous ventilation. Pressure oscillation has been incorporated into one form of RDS treatment; however, how far it reaches various parts of the lung is still questionable. Since in-vivo measurement is very difficult if not impossible, mathematical modeling may be used as one way of assessment. Whereas many models of the respiratory system have been developed for adults, the neonatal lung remains essentially ill-described in mathematical models. A mathematical model is developed, which represents the first few generations of the tracheo-bronchial tree and the 5 lobes that make up the premature ovine lung. The elements of the model are derived using the lumped parameter approach and formulated in Simulink? within the Matlab? environment. The respiratory parameters at the airway opening compare well with those measured from experiments. The model demonstrates the ability to predict pressures, flows and volumes in the alveolar regions of a premature ovine lung.  相似文献   

17.
The mechanical properties of lung parenchymal tissue are both elastic and dissipative, as well as being highly nonlinear. These properties cannot be fully understood, however, in terms of the individual constituents of the tissue. Rather, the mechanical behavior of lung tissue emerges as a macroscopic phenomenon from the interactions of its microscopic components in a way that is neither intuitive nor easily understood. In this review, we first consider the quasi-static mechanical behavior of lung tissue and discuss computational models that show how smooth nonlinear stress-strain behavior can arise through a percolation-like process in which the sequential recruitment of collagen fibers with increasing strain causes them to progressively take over the load-bearing role from elastin. We also show how the concept of percolation can be used to link the pathologic progression of parenchymal disease at the micro scale to physiological symptoms at the macro scale. We then examine the dynamic mechanical behavior of lung tissue, which invokes the notion of tissue resistance. Although usually modeled phenomenologically in terms of collections of springs and dashpots, lung tissue viscoelasticity again can be seen to reflect various types of complex dynamic interactions at the molecular level. Finally, we discuss the inevitability of why lung tissue mechanics need to be complex.  相似文献   

18.
The measurement of electrical impedance of skin using surface electrodes permits the assessment of changes in local properties of the skin and can be used in the detection of tumors. The sensitivity of this technique depends mainly on the geometry of the probe and the size of the tumor. In this article, the impedance method was used to estimate the sensitivity of a tetrapolar probe in detecting small regions of increased conductivity in a stratified model of human skin. The impedance method was used to model the potential distribution using fasorial analysis to solve the node equations of the equivalent circuit. Interpolation was applied to reduce discretization error. The skin was modeled as a three-layer structure with different conductivity and permittivity obtained from the literature. A tumor was modeled as a small volume with admittivity four times higher than the normal tissue. Sensitivity calculation was made as a function of electrode diameter and separation, tumor size, and excitation frequency. The simulations indicated that by inserting a one square millimeter tumor in the epidermis, the load impedance to the current source varies about 1% while the transfer impedance varied 8%. The sensitivity also increases nonlinearly with increasing tumor area and thickness. Additionally, it was found that the sensitivity of the transfer impedance has a maximum value when the electrodes are separated by 1.8 mm. The results show that transfer impedance measurements of the skin may detect small skin tumors with a reasonable sensitivity by using an appropriate tetrapolar probe.  相似文献   

19.
The fruit fly Drosophila embryo is one of the most important model organisms in genetics and developmental biology research. To better understand the biomechanical properties involved in Drosophila embryo research, this work presents a mechanical characterization of living Drosophila embryos through the stages of embryogenesis. Measurements of the mechanical forces of Drosophila embryos are implemented using a novel, in situ, and minimally invasive force sensing tool with a resolution in the range of microN. The measurements offer an essential understanding of penetration force profiles during the microinjection of Drosophila embryos. Sequentially quantitative evaluation and analysis of the mechanical properties, such as Young's modulus, stiffness, and mechanical impedance of living Drosophila embryos are performed by extracting the force measurements throughout the stages of embryogenesis. Experimental results illustrate the changing mechanical properties of Drosophila embryos during development, and thus mathematical models are proposed. The evaluation provides a critical step toward better understanding of the biomechanical properties of Drosophila embryos during embryogenesis, and could contribute to more efficient and significant genetic and embryonic development research on Drosophila.  相似文献   

20.
Decorin, a small leucine-rich proteoglycan with a widespread tissue distribution, is required for the normal fibrillogenesis of collagen in most tissues. Because collagen is important in determining the elastic behavior of the lung, we hypothesized that lung tissue mechanics would be altered in a mutant mouse in which the single decorin gene was abrogated by targeted deletion (Dcn-/-). Complex impedance of the respiratory system was measured in C57Bl/6 mice (Dcn-/- and Dcn+/+) using a small animal ventilator that delivers a volume signal with multiple frequencies to the trachea. A constant-phase model was fit to calculate airway resistance (R(aw)), tissue damping, and tissue elastance. Compliance of the respiratory system (C(rs)) was measured from a pressure volume curve during stepwise deflations. Lungs were excised, and parenchymal tissue strips were mounted in an organ bath for in vitro measurement of tissue impedance and quasistatic length-stress curves. In addition, pulmonary tissue was examined by immunohistochemistry and immunoblotting. In vivo, in the Dcn-/- mice, R(aw) was decreased and C(rs) was increased. Similarly, in vitro, length-stress curves showed increased compliance of the strips in the Dcn-/- mice. These alterations in lung tissue mechanical behavior in Dcn-/- mice support a critical role for decorin in the formation of the lung collagen network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号