首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were designed to determine why copulation in the pregnant rabbit does not terminate pregnancy while treatment with ovulatory doses of luteinizing hormone (LH) human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRH) is known to do so. Pregnant rabbits (Day 8) were mated or were injected with hCG (25 IU/doe) or LHRH (1, 10 micrograms/kg). Serial blood samples were collected over the next 72 h and analyzed for content of LH, follicle-stimulating hormone (FSH) and progesterone. At sacrifice, uteri and ovaries from these animals were examined for viability of the embryos and for signs of recent ovulation. Injection of hCG or LHRH into pregnant animals led to ovulation and to patterns of LH, FSH and progesterone secretion like those which precede ovulation in estrous rabbits. However, mating the pregnant does did not lead to ovulation or to any changes in the circulating hormones. To investigate whether the elevated levels of progesterone during pregnancy were responsible for the dissociation of coitus from ovulation, nonpregnant rabbits were injected with progesterone (2 mg/kg) and then mated or injected with hCG or LHRH. In virtually every respect, the numbers of ovulations and the patterns of hormone secretion in the progesterone-treated, nonpregnant rabbits mimicked those observed in the 8-day pregnant animals; injection of hCG or LHRH caused ovulation and hormonal surges while hCG caused ovulation only. Mating did not lead to ovulation or any change in blood levels of LH, FSH or progesterone. Taken together, the results show that the elevated circulating levels of progesterone, characteristic of pregnancy, are probably responsible for the dissociation of copulation from gonadotropin release in pregnant rabbits.  相似文献   

2.
The peripheral blood plasma concentration of estrone, progesterone and 15-keto-13, 14-dihydroprostaglandin F2alpha (PGF2alpha metabolite) were determined by radioimmunoassay techniques during the peripartal period in 5 buffalo cows belonging to a river type breed. Estrone levels started to increase from below 200 pg/ml about 15 days prior to parturition, and reached high concentrations (400-750 pg/ml) during the last 5 days of pregnancy. The estrone concentration decreased to baseline levels after delivery. The concentration of progesterone fluctuated between 800 and 2000 pg/ml until 15 days before calving and showed a gradual increase during the last 15 days of pregnancy. The progesterone levels declined abruptly on the day of calving and remained below 100 pg/ml for up to 60 days post-partum. Increased levels of the prostaglandin metabolite were recorded from 15 days prior to parturition with further increases occurring during the last 3 days of pregnancy. PGF2alpha metabolite levels declined gradually after parturition, reaching base line levels 15-20 days after calving.  相似文献   

3.
An on-farm blood progesterone enzymeimmunoassay (EIA) was evaluated as a diagnostic test to predict the time of calving within a 24-hour period in near-term dairy cows. Blood samples were taken daily from 45 cows beginning 5 days prior to their expected due dates until calving, and plasma was stored at -20 degrees C until all cows had calved. The EIA test was performed on frozen-thawed plasma samples, and progesterone concentrations were determined to be low (positive test for calving within 24 hours) or high (negative test for calving within 24 hours). Sensitivity, specificity and predictive value of the EIA to accurately determine parturition within 24 hours were 86.7, 90.8 and 75.0%, respectively. The EIA correctly predicted the day of parturition in 168 of 187 (89.8%) plasma samples. Ten additional cows were similarly monitored except the EIA was performed on whole blood immediately after collection, and the sensitivity, specificity and predictive value of the test were 80.0, 97.6 and 88.9%, respectively. The day of parturition was correctly predicted in 49 of 52 (94.2%) whole blood samples. More than 95% of the cows calved within 24 hours when their plasma progesterone reached < 1.3 ng/ml. When results of the EIA were compared with those of a radioimmunoassay (RIA), the EIA findings were used to correctly classify 190 of 232 (81.9%) plasma samples as having low (< 2.0 ng/ml) or high (>/= 2.0 ng/ml) concentrations of progesterone. The EIA test was found to be a quick, practical means of estimating progesterone concentrations in bovine plasma or whole blood and was a useful test for predicting the day of parturition in cows.  相似文献   

4.
Pregnancy was maintained in ovariectomised does with 1 to 4 mg/day of exogenous progesterone with or without 0.2 μg/day of estradiol. Progesterone doses were designed to give similar plasma progesterone levels in treated groups to those found in normal pregnancy, and were measured and compared with normals since this comparison does not appear to have been published previously. In normal pregnancy mean progesterone levels reached 10 ng/ml on day 7 and then plateaued at 14 ng/ml between day 10 and 20 before falling to very low levels at parturition. In treated groups progesterone levels reached 10 ng/ml on day 6 and remained between 10 and 13 ng/ml until day 20 before declining. The difference between treated and control plasma progesterone plateau levels was tested using the t-test and was found not to be significant. The differences in progesterone levels between treated groups with or without estradiol, whether pregnant or not, were also not significant. Mean litter sizes (alive or dead) were not significantly different. However, fetal viability in the group maintained on progesterone alone was significantly lower than in the normal controls.  相似文献   

5.
Female hares were given an i.v. injection of 5 micrograms luteinizing-hormone-releasing hormone (LHRH) between Days 7 and 19 (n = 21), 20 and 33 (n = 17) and 34 and 41 (n = 17) of pregnancy, and in the 3 days after parturition (n = 16). Whatever the stage of pregnancy, the LHRH injection induced a release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and an acute secretion of progesterone; these hormonal responses increased significantly during pregnancy, to reach values similar to those observed in nonpregnant, nonpseudopregnant females during the breeding season in the 3 days after parturition. However, the release of LH remained monophasic in pregnant and post-partum females, in contrast to the unmated females during the reproductive season, in which there was a biphasic profile. The proportion of ovulating females after LHRH treatment was approximately 60% at the beginning and end of pregnancy; and, after parturition, fell to 23% between Days 20 and 33. After Day 33, the pituitary response to LHRH was significantly higher in ovulating than in nonovulating females. At the beginning of pregnancy, 67% of females aborted after LHRH injection; after Day 20, the incidence of abortion decreased significantly and was 0% from Day 34. The amplitude and duration of progesterone secretion by the new corpora lutea resulting from ovulation after LHRH injection were similar to those of corpora lutea induced in nonpregnant females during the breeding season.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In the ovarian cycle of common marmosets, serum progesterone began to increase at two to three days after estradiol-17β or LH surge, attained a peak of 25–70 ng/ml and then declined to a level of under 2 ng/ml before the ensuing rise in estradiol-17β and LH. Serum estradiol-17β increased to 700–5,500 pg/ml during the luteal phase, synchronizing with progesterone. It is suggested that the corpus luteum secreted estradiol-17β as well as progesterone. The cycle length as determined from the interval between successive LH surges was approximately 28 days. During the luteal phase, the levels of progesterone and estradiol-17β were higher than in Old World monkeys and women, but marmosets were not accompanied by any clinical symptoms due to excessive progesterone and estradiol-17β. This suggests that such unresponsiveness to progesterone and estradiol-17β in marmosets reflects the small amount of estradiol-17β receptor and presumably also the lower function of the post receptor system. Recovery of the post-partum ovarian cycle in two marmosets differed from that observed in Old World monkeys and women. The first LH surge was found on the ninth and tenth day after parturition and the first ovulation led to the next pregnancy. This suggests that the suckling stimulus of newborns in the common marmoset does not cause any delay in recovery of the ovarian cycle. In three cases of abortion, the recovery of the ovarian cycle was almost the same as that in the case of normal parturition: the first LH surge appeared on the 10th, 14th, and 34th day after abortion.  相似文献   

7.
Prostaglandin or prostaglandin analogues have been shown to be luteolytic in the pregnant goat. In this study the temporal changes in the plasma concentrations of progesterone during pregnancy and after administration of PGF2a to pregnant goats are described. PGF2a administration to pregnant goats at 30 and 65 days after breeding induced abortion within 34 to 75 hours. These abortions were accompanied by estrus and profuse muco-hemorrhagic discharges. When PGF2a was administered to pregnant goats 140 or 142 days after breeding, premature parturition occurred within 42 to 76 hours. Live kids were delivered in all cases. The plasma levels of progesterone in all pregnant goats showed dramatic decreases within 24 hours after the prostaglandin injections and continued to decrease gradually until abortions or premature parturition. Thereafter, the progesterone levels remained low for several days.  相似文献   

8.
Three experiments were conducted to determine the relationship between concentrations of insulin-like growth factor-I (IGF-I) in ovarian follicular fluid and various biochemical markers of follicular differentiation in bovine follicles. In Experiment I, ovaries were removed on Days 7, 14, 28, 42, or 56 after parturition from a total of 21 cows. In Experiment II, ovaries of 31 cows were removed between Days 20 and 30 postpartum after 48 or 96 h of either saline (0.9% NaCl, 5 ml) or luteinizing hormone-releasing hormone (LHRH, 500 ng/5 ml saline) injections given every 2 h via jugular cannulae. In Experiment III, ovaries of six cows were removed 48-50 h after a 35-mg injection of prostaglandin F2 alpha during the midluteal phase of an estrous cycle. In Experiments I and II, all follicles greater than or equal to 8.0 mm in diameter were removed from each ovary (n = 33 and 46, respectively). In Experiment III, fluid from all follicles greater than 4 mm in diameter were removed individually (n = 10), and fluid from follicles 1-4 mm in diameter were pooled for each cow. Follicles for each experiment were further categorized as either estrogen-active (E-A, concentration of estradiol greater than progesterone in follicular fluid) or estrogen-inactive (E-I, concentration of progesterone greater than estradiol in follicular fluid). Measurements of immunoreactive IGF-I (i-IGF-I) were made after separating IGFs from their binding proteins with an acid-ethanol extraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two experiments were conducted to determine changes in serum concentrations of LH, total free estrogens and progesterone before and after weaning in sows. Blood was collected either via indwelling anterior vena cava cannula or by venipuncture and serum hormones were measured by radioimmunoassay. In Exp. I, blood was collected at 15-min intervals for 4 hr on day 7 and day 21 postpartum from three sows on each day. In addition, individual samples were collected from 10 sows on days 4 and 14 postpartum and from 11 sows on days 1, 3 and 5 after weaning (day 23 postpartum). Serum LH ranged from .2 to .8 ng/ml during lactation and averaged 1.1 ± .7, 1.1 ± .7 and 2.7 ± .7 on days 1, 3 and 5 after weaning, respectively. Progesterone was low (< 1 ng/ml) during lactation and averaged 1.9 ± .3, .6 ± .3 and 1.2 ± .3 on days 1, 3 and 5 after weaning. Estrogens were variable during lactation, averaged 121 ± 36 pg/ml on day 1 after weaning and decreased thereafter. Estrus began on day 3 after weaning in 1 sow and on day 5 in the remaining 10 sows.In Exp. II, blood was collected from seven sows at 12 to 24 hr intervals from 2 days before until 5 days after weaning (day 26 postpartum). Mean serum LH was .7 ± .1 ng/ml during 48 hr before weaning and remained unchanged after weaning until day 3 when LH increased to 6.1 ± .8 ng/ml. Serum LH concentrations then declined to 1.3 ± .8 and .9 ± .8 ng/ml on days 4 and 5 after weaning. Total estrogens averaged 31 ± 4 pg/ml during 48 hr prior to weaning and 32 ± 4, 43 ± 17, 28 ± 1, 30 ± 2, 16 ± 2 and 18 ± 2 on days 0 to 5 after weaning. Progesterone increased from 1.0 ± .3 ng/ml 24 hr before weaning to 3.0 ± .3 at weaning and then remained low (< 1 ng/ml) until after ovulation when progesterone increased. Estrus began on day 4 after weaning in all seven sows.Results from these two experiments indicate that in sows: (1) LH is suppressed during early lactation (day 7), gradually increases during late lactation (day 21) and then reaches peak concentrations after weaning near the onset of estrus, (2) estrogens increase between weaning and estrus and decline thereafter, and (3) progesterone rises transiently at weaning and then increases after estrus and ovulation.  相似文献   

10.
Thirty-six mares which foaled over a 10-day period were given 1 to 10 daily intramuscular injections of a combination of 150 mg. progesterone and 10 mg. estradiol 17β. The first injection was given within 18 hours after parturition. Because individual mares foaled on different dates during the 10 day period, commencement of treatment varied, but treatment for all mares ceased on the same day. Teasing and breeding began seven days after the final treatment. The mares were teased daily for 10 days and artifically inseminated every second day until ovulation occurred. The mean interval from the end of treatment to beginning of estrus was 9.4 days (range 7 to 14) and 33 of 26 mares (94.7%) ovulated 10 to 16 days after the final treatment. Both estrus and ovulation were effectively synchronized, resulting in a first estrus pregnancy rate of 80.6% (29 of 36).  相似文献   

11.
Ten gilts were examined for peripheral plasma levels of progesterone and oestrogens 3 weeks before and up to 8 weeks after parturition. The sows were slaughtered at different intervals after parturition and the ovaries were examined. Peripheral plasma levels of progesterone decreased dramatically from about 8ng/ml two days before parturition to about 2 ng/ml on the day before parturition. After parturition the mean progesterone level was about 1.5 ng/ml. Maximum oestrone levels of about 7 ng/ml were obtained two days before parturition. After parturition the level dropped to below 0.1 ng/ml. Three sows showed high levels of oestradiol (75–440 pg/ml) without signs of heat during the lactation. In no case were ovulated follicles or periodic corpora lutea registered.  相似文献   

12.
Plasma progesterone was measured by radioimmunoassay in individual female Myotis lucifugus throughout pregnancy and lactation. Progesterone levels, which averaged 6.7 +/- 0.7 ng/ml in late hibernation, rose to a mean of 18.9 +/- 6.7 ng/ml in unimplanted bats collected in the first two weeks after arrival at a maternity roost. Analysis of progesterone levels in bats in which the developmental stage of the embryo was known revealed two sharp, transient increases in plasma progesterone during the preimplantation period. The first, with values of 30-45 ng/ml, occurred at ovulation. The second, with values of 20-30 ng/ml, coincided with blastocyst formation. Progesterone levels increased exponentially from a mean of 7.4 +/- 1.0 ng/ml during early implantation to peak values of 100-200 ng/ml (means = 136.2 +/- 15.6) in the last two weeks of pregnancy, and showed no evidence of either a midpregnancy or prepartum decline. Despite involution of the corpus luteum at the end of pregnancy, progesterone levels averaged 9.0 +/- 1.0 ng/ml during lactation and did not decline until the end of lactation. In bats undergoing abortion, mean levels of plasma progesterone were already less than 6 ng/ml, equivalent to levels in nonbreeding females. The results indicate that the progesterone profile of pregnant M. lucifugus, though generally resembling those of other bats, exhibits several distinctive features. The sharp rise in plasma progesterone coinciding with blastocyst formation has not been reported in other mammals and suggests a possible role of progesterone in the cavitation process. In addition, peak values of plasma progesterone in late pregnancy were conspicuously higher than levels reported in other verpertilionid bats. The levels did not appear to fall before parturition, although such falls have been reported in other bats.  相似文献   

13.
Luz MR  Bertan CM  Binelli M  Lopes MD 《Theriogenology》2006,66(6-7):1436-1441
The canine corpus luteum (CL) typically sustains elevated plasma progesterone concentrations for 2 months or more, with a peak approximately 15-25 days after ovulation, followed by a slow decline. The processes involved in the slow, protracted regression of the CL over the remaining 1.5-2-month period in nonpregnant bitches and until shortly prepartum in pregnant bitches are not well characterized. The rapid luteolysis that occurs immediately prepartum appears to be a result of a prepartum rise in peripheral PGF. The potential role of PGF in the slow regression process in the several weeks preceding parturition and in nonpregnant bitches after 15-25 days after ovulation is not known. Therefore, plasma concentrations of 13,14-dihydro-15-keto-prostaglandin F2-alpha (PGFM), progesterone (P4) and estradiol (E2) were determined and compared in bitches during nonpregnant diestrus (n = 9) or pregnancy (n = 8). During the gradual decrease in plasma concentrations of progesterone in both groups, the P4 pattern appeared unrelated to changes in either E2 or PGFM concentrations. The PGFM pattern was different between diestrus and pregnant bitches (P > 0.01); there was an apparent progressive but slow increase in PGFM in pregnant bitches from Days 30 to 60, followed by a large increase prior to parturition; concentrations declined immediately postpartum. However, there were no increases in PGFM during the same interval in nonpregnant bitches. Mean estradiol concentrations were sporadically elevated during the last third of pregnancy and less so in nonpregnant diestrus; there was no acute prepartum increase in estradiol associated with the PGFM increase. In summary, although there were no apparent changes in peripheral PGF2alpha concentration involved in regulating the slow protracted phase of luteal regression in nonpregnant bitches, modest increases in PGFM may play a role in ovarian function after mid-gestation in pregnant bitches. Furthermore, the acute prepartum rise in PGFM was not dependent on any concomitant increase in estradiol concentrations.  相似文献   

14.
Serum progesterone and urinary total estrogen concentrations were determined weekly to bi-weekly in 2 female Asian elephants for 96 weeks. The mean estrous interval was approximately 16 weeks in the nonpregnant animal. A total of 5 cycles were observed in the 96 week study period. The serum progesterone concentration ranged from 150 pg/ml to greater than 350 pg/ml during the luteal phase of the estrous cycle. The serum progesterone was elevated for 8–12 week weeks of the 16 week estrous cycle. The urinary total estrogen concentration ranged from less than 10 to greater than 300 pg/μg creatinine. The second animal was pregnant at the beginning of the study period. The serum progesterone concentration was elevated (> 100 pg/ml) in the pregnant animal until parturition. The urinary total estrogens increased from approximately 50 pg/μg creatinine to greater than 400 pg/μg creatinine during the first year of pregnancy and remained elevated until parturition. Estrous cycling had not resumed by 3 months post partum.  相似文献   

15.
Hormonal studies in postpartum female camels and their neonates   总被引:1,自引:0,他引:1  
The expulsion of the fetus from the mother at parturition necessitates reorganization of the endocrine status in both individuals. In this study, the patterns of hormonal changes were investigated in postpartum Dromedary camels and their neonates. Blood samples were recovered within a few hours after calving from 10 female Dromedary camels and their calves, and sampling was continued at varying intervals upto Day 21 post partum. Sera were assayed for progesterone, cortisol and thyroid hormone concentrations by specific radioimmunoassays. Progesterone concentrations in the dams varied between 0.5 and 2.0 ng/ml on the day of calving and declined steadily thereafter to become undetectable by Day 9; progesterone remained undetectable in the neonates. Cortisol concentrations were high (25 to 30 ng/ml) at parturition in both the dams and their calves. They declined to 6 to 7 ng/ml in the dams, but became undetectable in the neonates by Day 14 post partum. The thyroid hormones were low in the dams (T(4) = 70; T(3) = 1.6 ng/ml) on Day 1 post partum but then increased gradually to Day 21 (T(4) = 110; T(3) = 2.2 ng/ml). In contrast, thyroid hormone concentrations in the neonates were 4 to 5 times higher than those of their mothers at birth. They declined thereafter but nevertheless remained at almost double the concentrations found in the dams.  相似文献   

16.
Mean (+/- s.d.) pregnancy length for the 14 llamas in this study was 350 +/- 4.5 days. Plasma progesterone concentrations increased by 5 days after mating and remained elevated (greater than 2.0 ng/ml) throughout most of pregnancy. At about 2 weeks before parturition, plasma progesterone concentrations began to decline, dropped markedly during the final 24 h before parturition, and returned to basal concentrations (less than 0.5 ng/ml) by the day of parturition. The combined oestrone + oestradiol-17 beta and oestradiol-17 beta concentrations varied between 6 and 274 pg/ml and 4 and 114 pg/ml, respectively, during the first 9 months of pregnancy. Concentrations increased between 9 months after mating and the end of pregnancy with peak mean concentrations of 827 +/- 58 (s.e.m.) pg oestrone + oestradiol-17 beta/ml (range: 64-1658) and 196 +/- 10 pg oestradiol-17 beta/ml (31-294) during the last week of pregnancy. Concentrations then declined to 87 +/- 14 pg oestrone + oestradiol-17 beta/ml (7-488) and 25 +/- 5 pg oestradiol-17 beta/ml (2.5-142) during the first week post partum. Plasma cortisol concentrations varied between 2.6 and 51.9 ng/ml (14.0 +/- 0.5) from mating until 2 weeks before parturition when the concentrations began to decline. Only a slight increase in plasma cortisol concentrations was observed in association with parturition. Plasma triiodothyronine concentrations varied between 0.5 and 4.5 ng/ml (1.9 +/- 0.1) throughout pregnancy and the periparturient period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Blood haematocrit and liveweight were determined throughout pregnancy and the post-partum period in 217 Booroola Merino and Merino ewes in order to relate these parameters to litter size at birth. In pregnant ewes, haematocrit declined from three until five months gestation, rose immediately after parturition then declined until two months post-partum. During the third to fifth month of gestation, haematocrit decreased in proportion to litter size. Nonpregnant ewes, measured at similar intervals, did not show the same pattern. Haematocrit of nonpregnant animals was higher than that of triplet-bearing ewes at three, four and five months gestation, but was only significantly different to single- and twin-bearing ewes at five months. The liveweight of pregnant ewes increased up to parturition and then declined until two months post-partum. The liveweight of nonpregnant ewes increased over the experimental period. It was concluded that the number of foetuses a ewe carried had significant effects on the decline in haematocrit during pregnancy. Haematocrit was not a precise indicator of litter size in sheep. Haematocrit, ewe liveweight and ovulation rate together in a multiple regression only accounted for 37% of the variation in litter size.  相似文献   

18.
Treatment of pregnant rats with 1 mg indomethacin/kg twice daily i.m. beginning on Day 20 delayed the onset of parturition by about 21 hr and prolonged the duration of spontaneous parturition by 4 hr. Plasma progesterone and oestradiol levels were determined in daily samples of peripheral blood, and uterine contractions were recorded before and during parturition by means of small, chronically implanted intrauterine balloons which were connected to pressure transducers via fluid-filled catheters. Indomethacin treatment did not inhibit or suppress spontaneous or oxytocin-induced contractions, which were of the same intensity in indomethacin-treated as in control rats. Parturition was induced with oxytocin in the same proportion of treated and control rats, but its induction was not successful in treated rats until 1 day later than in control rats, but its induction was not successful in treated rats until 1 day later than in controls. The onset of parturition was always related to the plasma progesterone level, which declined at a slower rate in indomethacin-treated than in control rats, reaching baseline values approximately 1 day later in the treated animals. The appearance of 20alpha-hydroxysteroid dehydrogenase in the CL of pregnant rats normally occurs on Day 21 of gestation, but activity was not observed until about 1 (0-3) day later in the indomethacin-treated rats, indicating that luteolysis was retarded. Prostaglandin F-2alpha infusions given on Day 21 reversed the effects of indomethacin treatment on plasma progesterone, luteal 20alpha-hydroxysteroid dehydrogenase activity and the timing and duration of parturition, and reduced the high perinatal mortality associated with indomethacin treatment, suggesting that the effects of indomethacin were related to its inhibitory action on prostaglandin synthetase activity. It is concluded that, in rats, indomethacin exerts its effects on parturition through inhibition of luteal regression which was significantly retarded but not prevented, and that indomethacin does not have a direct effect on myometrial contractility.  相似文献   

19.
Twenty mature, mixed-breed, seasonally anestrous female goats were used to study the effects of luteinizing hormone releasing hormone (LHRH) on ovulation rate, fertility, and blood progesterone levels following norgestomet-induced estrus and follicle stimulating hormone (FSH) treatments. Each goat received 6 mg norgestomet by subcutaneous (sc) implant and 3 mg intramuscularly, along with an intramuscular (im) injection of 5 mg estradiol valerate. Four injections of FSH were given for 2 d in divided doses of 10, 10, 5 and 5 mg im every 12 h, starting at 24 h before implant removal. The goats were randomly assigned to 1 of 2 equal treatment groups, and were treated with 2 intravenous (iv) injections of either 0.9% saline (control) or 300 ug LHRH at 24 and 48 h after the removal of the implants. All the goats exhibited estrus within 24 or 36 h of implant withdrawal and were mated to bucks of proven fertility. At laparotomy on Day 7 or 8 after the removal of the implants, the mean number of unovulated follicles was higher (P<0.05) in Group I than in Group II. The mean number of corpora lutea (ovulation rate), the total number of embryos and the number of normal embryos recovered were higher (P<0.05) in LHRH-treated does than in the controls. Treatment with LHRH resulted in 72.14% fertility (mean number of CL = 14) as compared with the controls with 64.29% fertility (mean number of CL = 2.8). The embryos obtained from goats in Group II were of more uniform developmental age regardless of the day of embryo collection, as compared with those of the controls. Plasma progesterone levels were significantly increased on Days 4 to 6 in both treatment groups. The results of this study have demonstrated that the FSH and LHRH treatment regimen increased follicular development, ovulation rate and blood progesterone levels in norgestomet-treated anestrous goats. Moreover, LHRH treatment enhanced fertility, and improved embryo quality as indicated by the significantly higher total number of embryos as well as the higher (P<0.05) number of normal recoverable embryos.  相似文献   

20.
Cloprostenol-induced luteolysis in the marmoset monkey (Callithrix jacchus)   总被引:2,自引:0,他引:2  
A single intramuscular injection of 0.5 micrograms cloprostenol was not luteolytic on Day 6 or 7 of the ovarian cycle (N = 3), but was luteolytic in some animals (3/5) on Day 8 and 9 and luteolytic in all 23 animals treated between Days 10 and 17 of the ovarian cycle, and in 7 animals treated between Days 19 and 43 of pregnancy. Luteal function was monitored by measurement of progesterone in peripheral blood using a simple and rapid non-extraction assay. There was a dramatic fall in peripheral blood progesterone to less than 10 ng/ml within 24 h of cloprostenol injection; progesterone remained at this low level until the day after post-treatment ovulation. The interval from cloprostenol injection to ovulation in animals treated between Days 8 and 17 was 10.7 +/- 0.3 days. A similar interval was found in pregnant animals. Embryos recovered from the uterus after cloprostenol treatment were morphologically normal (23/24).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号