首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
酸性α-淀粉酶的分离纯化与酶学性质研究   总被引:1,自引:0,他引:1  
纯化了枯草芽胞杆菌xm-1菌株酸性α-淀粉酶,并对其酶学性质进行了研究。通过硫酸铵沉淀和Sephadex G-75凝胶层析将酸性α-淀粉酶粗酶液纯化了32.5倍,活力回收率为10.0%。酶性质测定结果表明,该酸性α-淀粉酶分子量约为60kD,最适反应温度为45℃、最适作用pH5.0,该酶在pH3.4-6.0下稳定,高温耐受性差。Cu2+、Zn2+、EDTA对酶有不同程度的抑制作用,Ca2+和Mn2+对酶具有较强的激活作用。  相似文献   

2.
黑曲霉Tx-78耐酸性α-淀粉酶的分离纯化及其性质研究   总被引:3,自引:0,他引:3  
从酒由中选育得到产耐酸性α-淀粉酶的嗜酸性黑曲霉菌株Tx-78,经酒精沉淀,CM52和DE52纤维素离子交换层析对该酶进行纯化,通过SDS-PAGE检验其纯度并测得其分子量为74 ku.该耐酸性α-淀粉酶具有显著的热稳定性及酸稳定性.其最适反应温度与pH分别为70℃和pH 4.0.当反应温度低于60℃时,该酶在pH 4.0条件下可保持稳定活性达3 h以上.Ca2 、Ba2 对提高酶活力具有明显作用.薄层层析表明该酶制剂水解淀粉最终产物主要为麦芽糖和葡萄糖.  相似文献   

3.
超耐热酸性α-淀粉酶基因的克隆及其在酵母细胞中的表达   总被引:16,自引:0,他引:16  
用PCR方法扩增来源于极端嗜热厌氧古菌Pyrococcus furiosus中的超耐热酸性α-淀粉酶的结构基因,将该结构基因引入载体pPIC9K中,将重组质粒pPIC9K-Amy转化大肠杆菌DH5α细胞,测序结果表明,克隆到的α-淀粉酶结构基因为1305bp,其编码的成熟肽为435个氨基酸。将正确构建的重组质粒转化毕赤酵母GS115细胞,得到酵母工程菌株。在酵母α-Factor及AOX1基因启动子和终止信号的调控下,超耐热酸性α-淀粉酶在甲醇酵母中大量表达并分泌到胞外,该酶的表达受甲醇的严格调控和诱导,随着诱导培养时间的增加,在培养基上清液中的单位体积酶活力相应上升,在诱导培养7d后酶活力达到最大值。该酶最适反应温度为90~100℃,最适反应pH值为4.5~5.5。该酶具有非常好的温度稳定性,在100℃条件下热处理5h,仍具有60%以上的酶活力。该酶的这些优点使其非常适于在工业生产上应用。  相似文献   

4.
耐酸耐热α-淀粉酶高产菌株选育的初步研究   总被引:1,自引:0,他引:1  
目的:从长期高温堆放的富含淀粉质的土壤里筛选高产α-淀粉酶的菌株并对及产酶条件和酶学性质进行研究。方法:采用平板筛选法获得目的菌株,用观察形态和基因组16S基因序列分析相结合的方法进行鉴定,通过单因素和正交实验确定最适产酶条件,并提取粗酶液研究酶反应条件。结果:得到高产α-淀粉酶的菌株Bacillussp.I15,最适产酶条件为:初始pH6.0,40℃培养时间36h。该酶最适反应温度为70℃,且具强耐热性,100℃下相对酶活性仍保持在78%以上;热稳定性高,且无Ca^2+依赖性,100℃温育1h,酶活仍能保持66%;最适反应pH为7.0,且具有广谱耐酸性,在pH3.0~7.0之间相对酶活性均能保持在到67%以上。结论:Bacillussp.I15可高产耐热耐酸α-淀粉酶,具有良好的应用前景。  相似文献   

5.
采用RT-PCR法扩增马铃薯夏波蒂的α-淀粉酶成熟肽基因,将其亚克隆至毕赤酵母表达载体pPIC9k上,SacII线性化重组表达载体,电击转化毕赤酵母GS115感受态细胞,构建重组酵母GS115/pPIC9k-amy,利用锥虫蓝法筛选获得高活性转化子(GSamyA5),以终浓度为0.5%甲醇诱导该重组菌表达α-淀粉酶,通过Ni~(2+)-NTA agarose亲和层析纯化,并对其酶学性质进行研究。结果表明:该酶的最适反应温度为45℃,40~50℃酶活较稳定,保温50 min,残留相对活力达92.6%;最适反应pH值为6.0,并在pH 6.0~7.0范围内酶活保持稳定。Ca~(2+)、K~+可促进酶反应,以Ca~(2+)影响为最,相对酶活力提高到125%;Cu~(2+),Fe~(2+),Fe~(2+),Zn~(2+)对该酶有显著抑制作用;Mn~(2+),Mg~(2+)对酶有微弱抑制作用,Li~+、Na~+对酶活影响不大。  相似文献   

6.
以中温α-淀粉酶生产菌株Bacillus amyloliquefaciens M23基因组DNA为模板。PCR扩增得到了2.0kb α-淀粉酶基因全长序列。该基因由上游启动子220bp,结构基因1544bp和终止序列320bp构成。将无信号肽的α-淀粉酶结构基因amyQ,克隆入表达载体pET28a,转化E.coli BL21(DE3),经诱导,测定α-淀粉酶活性。结果表明:α-淀粉酶基因amyQ获得了活性表达,酶活力为2.297U/mL,SDS-PAGE电泳结果显示出分子量约为58kDa特异性蛋白质条带。酶学性质分析表明,重组α-淀粉酶的最适反应温度为60℃,最适反应pH为6.5,在60℃保温15min保持85%以上活性,超过15min,酶迅速失活,在pH5.5~10.0环境下稳定。水解产物分析表明:淀粉水解终产物主要为麦芽寡糖和糊精和少量葡萄糖。  相似文献   

7.
海栖热袍菌内切葡聚糖酶Cel12B是极耐热胞外酶,氨基酸序列分析表明不含有纤维素结合结构域(CBD),对结晶纤维素无活性,但同样菌种来源的木聚糖酶XynA有催化结构域和纤维素结合结构城。用同样极耐热酶CBD区域和Cel12B融合构建重组质粒pET-20b-Cel12B-CBD,经诱导表达后,对结晶纤维素有活性,酶学特性研究表明:最适反应温度为100℃、最适pH为5.8、在pH4.5~7.0时酶活力稳定,90℃保温2h仍有87%的酶活。  相似文献   

8.
用纱网滤掉瘦肉型猪 (PIC344) 新鲜精液中胶状物得原精液, 该原精液经硫酸铵分段盐析、DEAE Sepharose F F 离子交换柱层析、Sephacryl S 200 凝胶过滤后分离纯化到酸性磷酸酶 (Acid Phosphatase, 简称ACPase)。纯化倍数为22 78, 酶液比活力为15 26U/mg蛋白。纯化酶液经非还原性SDS PAGE检测, 呈现单一蛋白着色带。测得该酶相对分子质量为52 3kD, 等电点为5 1, 米氏常数 (Km 值) 为3 08×10-3mol/L。测得该酶最适pH为3 6, 最适温度为52℃。ACPase在pH 3 5~6 0范围内稳定, 在40℃以下稳定, 50℃保温30min后酶活仍能保持59 2%。  相似文献   

9.
利用毕赤酵母的质粒载体pPIC9K将极端耐热古菌Pyrococcusfuriosus的超耐热酸性α-淀粉酶(Amy)基因转化到多型汉逊酵母HP-6中,获得重组汉逊酵母。经过甲醇进行诱导,表达产物的酶活性检测和SDS-PAGE电泳,证明α-淀粉酶(Amy)在多型汉逊酵母中利用AOX1启动子和α-因子信号肽有效表达并分泌到胞外。该酶的最适反应温度为90~100℃,最适作用pH为4.0~5.0,较之重组毕赤酵母的最适作用pH还低0.5。此外与毕赤酵母的重组蛋白相比,重组汉逊酵母α-淀粉酶不仅菌株筛选简便、周期短,而且具有更容易筛选到高拷贝转化子以及适用于大规模工业发酵等优点。  相似文献   

10.
将南极假丝酵母脂肪酶A(cala)基因克隆至组成型表达载体pGAPZαA中,电激转入X-33,获得高效表达的CALA酵母工程菌株.发酵液上清经超滤浓缩、硫酸铵沉淀和阴离子交换层析等步骤,获得纯化的重组CALA,其比酶活达384.90 U/mg.该酶最适温度为70℃,最适pH值为8.0.经50℃保温2 h,仍含有60%水解酶活力;在pH7.0和8.0溶液中比较稳定.经DMSO处理1 h,仍保持90%的活性;非离子型表面活性剂能提高CALA的酶活,金属离子在不同程度上抑制CALA的酶活.  相似文献   

11.
担子菌漆酶的分离纯化及其性质研究   总被引:28,自引:2,他引:26  
采用硫酸铵盐析、DEAE纤维素柱层析、Phenyl SepharoseTM6 Fast Flow疏水柱层析等方法,得到电泳纯的漆酶同工酶Lac1,纯化倍数为318.4,活力回收率为18.6%。用SDSPAGE测得该酶分子量为60.3kD,而经质谱分析为55.94kD。最适反应温度为65℃,最适反应pH值为2.2~2.8,酶的等电点pI(室温)为4.02,其N末端序列为AIGPVTDL,用硫酸酚法测得其含糖量为49.2%。25℃条件下,以ABTS(2,2'azinobis(3ethylbenzthiazoline6sulphonate)为底物的Km为17.5μmol/L。该酶在45℃,pH3.0~9.5较稳定。Cu2+对酶活有明显的促进作用,Fe2+完全抑制酶的活性,Mn2+和Ag对酶活无明显影响。DTT(Dithiothreitol,二硫苏糖醇)和NaN3完全抑制酶的活性。Koshland试剂对漆酶的活力影响比较大,色氨酸可能是酶活力的必需基团。  相似文献   

12.
A novel peroxidase isolated from a local chick pea (Cicer arietinum L.) cultivar (Balksar 2000) was purified by means of ammonium sulfate precipitation, DEAE-cellulose chromatography and two runs on gel filtration. The purified enzyme has a specific activity of 2045 U/mg with 17 % activity recovery. The molecular mass of the enzyme was estimated to be 39 kDa by SDS-polyacrylamide gel electrophoresis. Optimum pH and temperature of the enzyme were 5.5 and 45 degrees C respectively. The thermal denaturation of local chick pea peroxidase was studied in aqueous solution at temperatures ranging from 45 degrees C to 65 degrees C. The temperature of 50% inactivation of the enzyme was found to be 68 degrees C. The enthalpy (DeltaH*) and free energy (DeltaG*) of thermal denaturation of chick pea peroxidase were 101.4 and 103.4 k J/mol respectively at 65 degrees C.Metals like Zn2+, Mn2+, Hg2+, Co2+ and Al3+ slightly inhibited the peroxidase activity while Ca2+, Mg2+ and Ba2+ have no effect on enzyme activity. The high specific activity and thermal stability make chick pea peroxidase an alternative to horseradish peroxidase (HRP) in various applications.  相似文献   

13.
An extracellular proline iminopeptidase, with a molecular mass of about 53 kDa, was purified from Arthrobacter nicotianae 9458 and characterized. The enzyme had temperature and pH optima of 37 degrees C and 8.0, respectively, was completely inactivated by heating for 1 min at 80 degrees C and showed highest activity on Pro-pNA. The proline iminopeptidase was characterized by activity at low temperature, NaCl concentrations up to 7.5% and by high sensitivity to pH values 6.0, serine enzyme inhibitor PMSF and divalent cations, Fe2+, Sn2+, Cu2+, Zn2+, Hg2+, Co2+ and Ni2+. The extracellular proline iminopeptidase from A. nicotianae 9458 was able to hydrolyze proline-containing peptides at the pH, temperature and NaCl concentration typical of the surface of smear-ripened cheese and may contribute to proteolysis of these cheeses during ripening.  相似文献   

14.
重组大肠杆菌热稳定性过氧化氢酶的纯化及性质研究   总被引:12,自引:0,他引:12  
将产热稳定性过氧化氢酶的重组大肠杆菌培养后菌体破碎得到的粗酶液经热处理、硫酸铵分级沉淀、DEAE\|Sephadex A\|50离子交换层析、HiPrep16/10 Phenyl疏水作用层析、Superdex200 HR 10/30凝胶层析提纯后得到电泳纯的酶,比酶活达到15629U/mg。此酶的最适温度为70℃,最适pH70,在60℃保温60min酶活力基本不变,在pH3~8的范围内比较稳定。此酶的Km和Vmax分别为775mmol/L和278mmol\5min\+\{-1\}·mg-1。1mmol/L的Zn2+、Ba2+、Mn2+可使该酶完全失活,KCN、NaN\-3、Na\-2S\-2O\-4、巯基乙醇对酶活力有抑制作用,50mmol/L的EDTA不影响酶活性。  相似文献   

15.
灰色链霉菌RX-17溶菌酶R1的纯化及性质研究   总被引:6,自引:0,他引:6  
通过硫酸铵分级沉淀,CM-Sephadex C50、CM-Sepharose Fast Flow离子交换层析及Sephadex G-75凝胶过滤层析,从灰色链霉菌(Streptomyces griseus)RX17的发酵上清液中得到了电泳纯的溶菌酶R1,回收率6.89%。测得该酶分子量和等电点分别为16.8kD和9.10,作用于变链球菌(Streptococcus mutans)Ingbritt的最适温度和pH分别为70℃和6.6。R1酶在50℃以下及pH6~9的范围内保持稳定,60℃保温1h,残存酶活20.3%。Mg2+对酶有激活作用,而Zn2+、Cu2+、Fe2+、Cd2+、Pb2+则使酶完全丧失活性,螯合剂、盐酸羟胺、碘乙酸抑制酶活,β-巯基乙醇及表面活性剂则对溶菌有部分促进作用。R1酶溶菌谱广泛,对多种卵清溶菌酶不能作用的G+、G细菌均有溶解能力,对变链球菌、金黄色葡萄球菌(Staphylococcus aureus)、乳杆菌(Lactobacillus)等则呈现高活性。  相似文献   

16.
A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.  相似文献   

17.
Beta-N-acetyl-D-glucosaminidase was purified from viscera of green crab (Scylla serrata) by extraction with 0.01 M Tris-HCl buffer (pH 7.5) containing 0.2 M NaCl, ammonium sulfate fractionation, and then chromatography on Sephadex G-100 and DEAE-cellulose (DE-32). The purified enzyme showed a single band on polyacrylamide gel electrophoresis, and the specific activity was determined to be 7990 U/mg. The molecular weight of the whole enzyme was determined to be 132.0 kD, and the enzyme is composed of two identical subunits with molecular mass of 65.8 kD. The optimum pH and optimum temperature of the enzyme for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were found to be at pH 5.6 and at 50 degrees C, respectively. The study of its stability showed that the enzyme is stable in the pH range from 4.6 to 8.6 and at temperatures below 45 degrees C. The kinetic behavior of the enzyme in the hydrolysis of pNP-NAG followed Michaelis-Menten kinetics with Km of 0.424 +/- 0.012 mM and Vmax of 17.65 +/- 0.32 micromol/min at pH 5.8 and 37 degrees C, and the activation energy was determined to be 61.32 kJ/mol. The effects of some metal ions on the enzyme were surveyed, and the results show that Na+ and K+ have no effects on the enzyme activity; Mg2+ and Ca2+ slightly activate the enzyme, while Ba2+, Zn2+, Mn2+, Hg2+, Pb2+, Cu2+, and Al3+ inhibit the enzyme to different extents.  相似文献   

18.
Protein precipitate of cell-free dialysate of extracellular inulinase (2,1-beta-fructan fructanohydrolase, EC 3.2.1.7) of A. alternata was maximally obtained by methanol. Such protein was fractionated by using 2-step column chromatography on Sephadex G150 and DEAE-cellulose. The partially purified enzyme had activity of 81 x 10(3) U/mg protein, with a yield of 69% of the original activity and the fold of purification was 62. Optimum temperature and pH for the activity of the purified enzyme were found to be 55 degrees C and 4.5, respectively. The enzyme was found to be stable up to 55 degrees C and in pH range of 4 to 5. Ba2+ and Ca2+ were found to stimulate the enzyme activity while Cu2+, Fe3+, Hg2+, and iodoacetate were recorded as strong inhibitors. T(1/2) of the enzyme was estimated to be two weeks and its apparent Km was calculated to be 0.066 M. The enzyme recorded hydrolyzing activity against sucrose and raffinose recording I/S ratio of 0.50. Molecular mass of the enzyme preparation was estimated by gel filtration and found to be 115 +/- 5 kDa.  相似文献   

19.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

20.
The ornithine-urea cycle has been investigated in Fasciola gigantica. Agrinase had very high activity compared to the other enzymes. Carbamoyl phosphate synthetase and ornithine carbamoyltransferase had very low activity. A moderate enzymatic activity was recorded for argininosuccinate synthetase and argininosuccinate lyase. The low levels of F. gigantica urea cycle enzymes except to the arginase suggest the urea cycle is operative but its role is of a minor important. The high level of arginase activity may benefit for the hydrolysis of the exogenous arginine to ornithine and urea. Two arginases Arg I and Arg II were separated by DEAE-Sepharose column. Further purification was restricted to Arg II with highest activity. The molecular weight of Arg II, as determined by gel filtration and SDS-PAGE, was 92,000. The enzyme was capable to hydrolyze l-arginine and to less extent l-canavanine at arginase:canavanase ratio (>10). The enzyme exhibited a maximal activity at pH 9.5 and Km of 6 mM. The optimum temperature of F. gigantica Arg II was 40 degrees C and the enzyme was stable up to 30 degrees C and retained 80% of its activity after incubation at 40 degrees C for 15 min and lost all of its activity at 50 degrees C. The order of effectiveness of amino acids as inhibitors of enzyme was found to be lysine>isoleucine>ornithine>valine>leucine>proline with 67%, 43%, 31%, 25%, 23% and 15% inhibition, respectively. The enzyme was activated with Mn2+, where the other metals Fe2+, Ca2+, Hg2+, Ni2+, Co2+ and Mg2+ had inhibitory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号