首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
To determine the main benefits of clonal expansion of Miscanthus sinensis patches (monoclones), we observed the annual pattern of the areal expansion of a number of M. sinensis patches and examined how the quantity of rhizomes in such patches is related to changes in their basal area. To forage for nutriments, a patch must continuously widen its habitat. Patches annually expanded centrifugally by sympodial branching of short rhizomes, which originated in tillering that occurred more than once a year. However, the basal area of the patches approached a ceiling as the patches aged. Both the number and the weight of rhizomes in the patches continued to increase as long as the basal area expanded. The mean weight of rhizomes in patches also initially increased quickly, but then reached a ceiling as the clones expanded. Similarly, the amount of reserve substance per shoot in the patches increased asymptotically along with the clonal expansion, depending on the rhizome mass allotted to each shoot. These results suggest that, in the clonal growth of M. sinensis patches, the accumulation of reserve matter in the rhizomes is more important than foraging in new areas.  相似文献   

2.
李海燕  杨允菲 《应用生态学报》2005,16(12):2339-2343
在松嫩平原羊草草甸,对水淹恢复演替过程中半径为0.5、1、3、和10 m的羊草无性系种群斑块分蘖株的物质生产和根茎的物质贮藏进行了研究.结果表明,0.5、1、3、 m斑块各圈和10 m中间及边缘根茎的物质贮藏以1龄级、不同斑块各圈分蘖株的物质生产以1、2龄级对种群的贡献最大,其物质贮藏和生产所占比例均逐圈增加.整体上,年轻龄级分蘖株和根茎具有旺盛的物质生产力和贮藏力.无性系斑块由中心至外围的物质生产和贮藏规律与斑块扩展趋势具有一致性.0.5~10 m斑块分蘖株物质生产力和根茎贮藏力的变异以最外圈最大.在水淹羊草草甸的恢复过程中,不同大小羊草无性系斑块种群构件的物质生产和贮藏策略为种群不断扩展和群落进展演替奠定了物质基础.  相似文献   

3.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

4.
Jensen  Susan  Bell  Susan 《Plant Ecology》2001,155(2):201-217
By examining the spatial distribution of rhizome morphological characteristics of the seagrass Halodule wrightii, in relation to a seasonal pattern of seagrass patch dynamics, we attempted to derive a mechanistic explanation for the variety of changes exhibited by seagrass patch shapes. Rhizome morphological characteristics (mean internodal distance, branching frequency and biomass) were measured at three spatially-recognized regions (Flood edge, Center, Ebb edge) of 5 seagrass patches, reflecting position relative to hydrodynamic flow. In addition, maps (1 resolution) of the seagrass patches were used to quantify changes in seagrass patch margins across the growing season. Rhizome morphological characteristics varied with spatial position: longer internodal distances were recorded on both edges of the patch relative to patch center, and rhizomes from Flood edges exhibited longer internodes than plants on the Ebb edge of patches. Branching frequency showed no spatially-explicit distribution across the seagrass patches. Patch change analysis indicated a pattern of increase in patch area on the Flood edges of seagrass patches and recession (or no change) on the Ebb edges. Patch margin change was significantly correlated with internodal distances: the more positive the increase in patch seagrass coverage on an edge, the greater the internodal distances.Sediment nutrients were explored as a potential mechanism for the distinct spatial distribution of morphologies found; experimental addition of phosphorus, but not nitrogen, significantly altered the rhizome morphology and biomass, but measurement of ambient sediment nutrient concentrations produced no significant correlations with the in situ distribution of rhizome morphologies. These results suggest that larger-scale landscape characteristics of patch dynamics may be determined by predictable behaviors of small-scale components, but the results do not conclusively describe a mechanism for this system.  相似文献   

5.
Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China''s northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for the management of L. chinensis-dominant grasslands.  相似文献   

6.
The evolution of clonal growth is a widespread phenomenon among plant species, characterized by the production of genetically identical clonal fragments (ramets) via rhizomes or stolons that form an interconnected clonal organism (genet). Clonal plant species are known to differ in their investment into ramet production, and exhibit considerable variation in ramet morphology both within and among species. While patterns of resource allocation are thought to be linked to a number of plant characteristics, many analyses are limited by uncertainty in how clonal plants determine the morphology and resources allocated to new ramets. In this study, we attempted to discern what aspects of parent ramets best predicted resource allocation to new daughter ramets, and the relationship between resource allocation and daughter ramet rhizome morphology. We grew two sedge species, Schoenoplectus tabernaemontani and Eleocharis elliptica, in a greenhouse under two levels of fertilizer addition. By harvesting daughter ramets that had initiated stem production, yet remained aphotosynthetic, we were able to isolate parental investment into non-independent daughter ramets at a point where daughter ramet spacer length became fixed. Our results indicate that parent ramets allocated a non-linear proportion of parent rhizome biomass to the production of daughter ramets. Moreover, this relationship was unaffected by environmental nutrient availability. Daughter ramet biomass, in turn, was strongly correlated with daughter ramet spacer length. These observations shed light on key processes governing clonal growth in plants, and their potential application in unifying allocational and morphological perspectives to explore the fitness implications of variability in clonal growth.  相似文献   

7.
Reynoutria japonica is a common perennial pioneer species onJapanese volcanoes. In a volcanic desert (1500m above sea level)on Mount Fuji (3776m), central Japan, this species forms circularstands (patches). As a patch develops, shoot density decreasesin its centre (‘central die-back’). The centraldie-back has been considered a key process in the early stagesof primary succession, though its mechanism has been unknown. The pattern of patch development, population dynamics of aerialshoots, and growth patterns of below-ground organs were analysedin order to investigate the mechanism of die-back, and the followingtraits are clarified: (1) central die-back areas occur in mostsmall patches (approx. 1m2) without later successional species;(2) shoot characteristics are dependent both on their positionwithin a patch and on patch size; (3) despite the large differencesin shoot density, neither time course of shoot growth nor theirmortality differs between the centre and periphery of patches;and (4) rhizomes ofR. japonicagrow outwards with regular sympodialbranching. From these results, it is concluded that neither interspecificnor intraspecific competition is likely to be a primary causeof the die-back phenomenon, but that central die-back is broughtabout intrinsically by the growth pattern of the rhizome systems.We also discuss the importance of the central die-back in facilitatingestablishment of later successional species in the early stagesof primary succession. Clonal plant; central die-back; competition; facilitation; Japanese knotweed; Mount Fuji; primary succession;Reynoutria japonica ; rhizome growth; volcanic desert  相似文献   

8.

Background and aims

Plant root placement is highly plastic in order to acquire patchily distributed nutrients and to ensure their survival, growth and reproduction. Considering the spatial extension of clonal organs, we selected two clonal plants (Leymus chinensis (Trin.) Tzvel. and Hierochloe glabra Trin.) to determine the spatio-temporal effects of environmental heterogeneity on belowground organs and newly-born ramets.

Methods

Small-scale and multi-patch heterogeneous environments were manipulated by creating four patches filled with different types of soil in a same pot. The four patches were composed of sandy soil, sandy loam, loam soil and humus soil, respectively. Ramet number, bud number, mean spacer length, rhizome length, and biomass allocation within each patch were measured to identify plant foraging responses.

Results

The preferential patch of L. chinensis was humus soil patch which was the highest in nutrient availability, whereas H. glabra preferred to place ramets in sandy loam and loam soil patches. When growing in homogeneous environments, both species randomly rooted their offspring ramets in the four compartments. In heterogeneous environments, foraging responses were detected in ramet placement, aboveground biomass and total rhizome length. However, there were no differences in bud number or belowground biomass among four types of patches in heterogeneous environments, which might suggest that there would be no inter-patch differences in seedling establishment in the next year.

Conclusions

Plants show selective allocation of offspring ramets to preferential patches in the presence of multi-patch environmental heterogeneity. Responses of H. glabra to multi-patch heterogeneity were faster than those of L. chinensis, demonstrating that the foraging patterns are species-specific. Clonal plants can rapidly respond to environmental heterogeneity, whereas foraging responses are potentially reversible over a longer temporal scale.  相似文献   

9.
为了研究高原亚寒带沙化生境中切断根茎对克隆植物基株扩展能力和分株定居能力的影响,在川西北若尔盖高原沙化区内,对根茎禾草赖草和沙生苔草进行了以切断根茎为处理的野外实验。结果表明,赖草和沙生苔草基株的幼小部分(观测单元)地上枝总长度增量、主根茎长度增量和根茎总长度增量显著减少,而对根茎数增量、主根茎节增量和根茎节总数增量影响不显著;赖草观测单元地上枝数增量显著减少,而对沙生苔草地上枝数增量无影响;赖草地上枝与根茎的相关性质发生逆转。这表明.在高原亚寒带半湿润沙化生境中.克隆整合效应显著促进基株幼小部分地上枝和根茎的伸长生长,但对新生根茎的产生和根茎节分化没有影响;切断根茎处理导致赖草、沙生苔草生殖生长与营养生长间竞争加剧,同时使赖草地上部分与地下部分间竞争加剧;观测单元在缺少与基株(或上级株系)的克隆整合作用时,赖草受到的影响大于沙生苔草。  相似文献   

10.
Abstract. The dynamics of Vaccinium myrtillus (bilberry) patches were studied in spruce (Picea abies) forest at the higher montane and lower subalpine level in the Tarentaise valley (Savoy, France). Although aerial parts of the shrub may give some indication of age and density of the patches, the annual growth and death of rhizomes are better indicators of patch dynamics. In some cases, dead and young rhizomes may occur simultaneously in the same patch, indicating that growth and death proceed continuously on the inside of dense patches. At mountain sites, slope position of plants significantly influences rhizome growth. A theoretical model of growth of bilberry patches is proposed which takes into account the anisotropic influenceof slope and the postulated independence of different rhizome units belonging to the same individual.  相似文献   

11.
The emergent macrophyte species Sparganium erectum occurs commonly at the margins of low- to medium- energy river systems across the northern temperate zone. It is considered as an invasive species along low-energy water courses in many parts of the US and Australia. The life-cycle and biomechanical properties of this species make it very well adapted to such environments, allowing rapid growth and sediment trapping, such that encroachment into the channel occurs as the growing season progresses. The widespread growth of species such as S. erectum is therefore of particular concern, when considering the flood risk potential of many rivers. As such, the conditions required for survival or uprooting and scouring of this plant are of interest, as are the times of the year and processes by which these plants spread to increase the size of current stands, and to form new stands. It is known that S. erectum reproduces by several vegetative methods including rhizome growth, dispersal of detached rhizomes, and relocation of entire plants. However, the mechanisms and flow conditions necessary for uprooting or scouring of entire plants, and the separation of fragments of this species, at different times of the year, are largely unknown. The aim of this paper is to model the uprooting resistance of S. erectum plants as reported by Liffen et al. (in press), and to investigate the manner by which this species is adapted to proliferate in low-energy, low-gradient streams. The results presented here show that Monte Carlo simulations using the RipRoot root-reinforcement model can be used to accurately model plant pullout forces, rhizome interconnectivity and length changes for S. erectum plants throughout the growing season. Analysis presented here also suggests that plant uprooting forces are several orders of magnitude larger than potential drag forces that could act on the S. erectum plants at the River Blackwater site modeled, and even at sites with much higher channel slopes. This result suggests that the ability of these plants to thrive in low-energy rivers, but not in higher-energy river environments, is less related to driving forces causing drag on the plants, and more related to the energy conditions controlling erosion and deposition of the fine substrate materials these plants thrive in. The critical shear stress of the fine within-vegetation material was shown here to only be exceeded by the average boundary shear stress within the vegetation, during winter months when above-ground biomass and thus Manning's n values were at their lowest. For example, during March and April average boundary shear stress was predicted to exceed critical boundary shear stress for 6% of the time. Erodibility measurements from jet-tests conducted at the River Blackwater fieldsite suggested that this excess in boundary shear stress could result in potential vertical scour of up to 0.09 m in both March and April. During the majority of the growing season sediment trapping rather than erosion dominated, with enough deposition occurring over the summer to protect all but the shallowest, weakest and least interconnected rhizomes and plants from being scoured in the winter months. The balance between erosion and deposition within stands of S. erectum in these low-energy environments therefore allows for the maintenance of established stands of vegetation, whilst still allowing for scouring of weaker S. erectum plants that can establish previously un-colonized channel margins further downstream.  相似文献   

12.
A field experiment was conducted in Inner Mongolian dune to investigate the contribution of clonal integration to genet expansion and ramet establishment in clonal plants in semi-arid inland dune. In the experiment, the developing parts (plant observing unit) of two rhizomatous grass species Psammochloa villosa (Trin.) Bor and Leymus secalinus (Georgi.) Tzvel. were subjected to the treatment of severing rhizomes. The 7 characters relevant to the elonal growth of the plant observing units were investigated such as total length of shoots, number of shoots, number of rhizomes, length of main rhizome, total length of rhizomes, number of main rhizome nodes and total number of rhizome nodes. The results showed that the increments in those plant characters were reduced by the treatment in P. villosa, while no effect of the treatment was observed in L. secalinus. The results suggest an interspecific difference in clonal integration and in its contribution to clonal growth. In P. villosa, clonal integration and clonal growth offer great contributions to the survival of the plants in the sandy grassland characterized where water shortage, strong transevaporation, infertility, habitat patchiness and frequent disturbance were most characteristic.  相似文献   

13.
土壤养分的空间异质性在自然界普遍存在, 而克隆植物被认为能很好地适应和利用土壤养分异质性。尽管尺度和对比度是异质性的两个重要属性, 但有关土壤养分异质性的尺度和对比度及其交互作用对克隆植物生长和分株分布格局影响的研究仍比较缺乏。在一个温室实验中, 根状茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis) (异名扁秆藨草(Scirpus planiculumis))被种植在由高养分斑块和低养分斑块组成的异质性环境中。实验为两种尺度处理(大斑块和小斑块)和两种对比度处理(高对比度和低对比度)交叉组成的4种处理组合。在每个处理中, 高养分和低养分斑块的总面积相同; 在所有4种处理中, 土壤养分的总量也完全相同。无论在整个克隆(植株)水平, 还是在斑块水平, 尺度、对比度及其交互作用对扁秆荆三棱的生物量、分株数、根状茎长和块茎数的影响均不显著。然而, 在斑块水平, 扁秆荆三棱在高养分斑块中的生物量、分株数、根状茎长和块茎数均显著高于低养分斑块, 而在高养分斑块中相邻分株间的距离(间隔物长)小于低养分斑块, 并且这种效应均不依赖于斑块尺度的大小和对比度的高低。因此, 在土壤养分异质性环境中, 扁秆荆三棱可以通过缩短间隔物长, 并可能通过提高根状茎的分枝强度, 把较多的分株和潜在分株放置在养分条件好的斑块中。这种响应格局体现出克隆植物的觅食行为, 有利于整个克隆对异质性资源的吸收和利用。然而, 该实验中的尺度和对比度对扁秆荆三棱分株的放置格局均没有显著效应。作者推测, 在一个更大的斑块尺度和(或)对比度范围内, 扁秆荆三棱对土壤养分异质性的响应可能不同。因此, 下一步的研究应涉及更广泛的尺度和对比度。  相似文献   

14.
Clonal architecture is involved in performance of clonal fragments, as it determines spatial distribution of ramets. It is expected to rely on the species-specific expression of several architectural traits (structural blue-print). However, in contrasting environments, realized clonal architectures may differ, due to phenotypic plasticity. In this paper, we compared clonal architectures between two rhizomatous ecologically close Cyperaceae (Carex divisa and Eleocharis palustris) in non-defoliated and defoliated conditions. Two questions were addressed. (1) How much do the structural blue-print and resulting colonization and occupation of space differ between both species? (2) Does the structural blue-print constrain plastic responses of clonal architecture to defoliation? Traits related to performance, spatial pattern, architecture and biomass allocation of clonal fragments were monitored through an original non-destructive mapping method. In non-defoliated conditions, both species showed similar biomass but contrasting architectures and patterns of biomass allocation to rhizomes that resulted in different spatial patterns. The rhizome network of C. divisa, which consisted in only two primary rhizomes but several branches, was involved in resource storage rather than in spatial colonization. Conversely, E. palustris produced on average six primary rhizomes that grew in the whole horizontal plane, maximizing both occupation and colonization of space. These differences in structural constraints coupled with allometric relationships, resulted in differential responses to defoliation. In C. divisa, the costs associated to defoliation caused a decrease in branching, limiting the area occupied and number of ramets produced by clonal fragments, but increasing ramet density. Conversely, the weakly branched rhizome network of E. palustris was not affected by defoliation. Both spatial strategies (consolidation vs. colonization) are likely to provide ecological advantages allowing their coexistence in grazed meadows.  相似文献   

15.
海草克隆性及其种群遗传效应   总被引:1,自引:0,他引:1  
苗苑  徐娜娜  于硕  耿艳  陈小勇 《生态学报》2009,29(7):3846-3853
海草是适应在海洋环境中生存和繁殖的单子叶植物,由于所处环境常存在潮汐、风暴等的干扰,海草形成了一系列适应特征,克隆性是其中突出的一个.所有的海草都具有水平根状茎,许多海草也具有垂直根状茎,在一些海草中,也观察到无性生殖(无融合生殖).与克隆生长有关的参数(如节间长度、间隔子长度、分枝角度以及延伸速率和分枝率等)对于海草的克隆生长有着决定性影响,但繁育系统对克隆斑块大小也有较大影响.强烈的克隆性影响着海草的遗传变异.总体来看,海草种群内遗传多样性比陆生植物低,也低于另一类海洋高等植物-红树植物,利用DNA标记观察到的多样性高于等位酶标记.在一些海草植物种群中观察到较高的克隆多样性,但也有一些种群由单一基因型或少量基因型组成,其原因主要是由于奠基者效应和克隆生长.通常克隆植物中基因流有限,但是海草的克隆片段可能远距离扩散,从而提高种群间的基因流.就克隆生长对种群空间结构和交配系统的影响进行了综述.  相似文献   

16.
The development of single clones of the seagrass Cymodocea nodosa was analysed using a growth model based on the formation of structures limited by diffusive aggregation. The model implemented the measured clonal growth rules (i.e. rhizome elongation and branching rates, branching angle, and spacer length between consecutive shoots) and shoot mortality rate for C. nodosa at Alfacs Bay (Spain). The simulated patches increased their size nonlinearly with time displaying two different domains of growth. Young patches showed a rapid increase with time of the length of rhizome network and the number of living shoots, which depended on rhizome branching rate, and increased the radial patch size (Rg) algebraically with the number of living shoots as Rg ∝ Ns1/Df, being Df the fractal dimension of the patch structure. Patches older than 4 years increased the production of rhizome network and the number of living shoots much more slowly, while their radial patch size behaved as Rg ∝ Ns0.5 resulting from an internal patch compactation. Moreover, the linear growth rate of the simulated patches changed up to 30 fold during patch development, increasing with increasing patch size until patches reached an intermediate size. The modelled patch development was found to closely reproduce the observed patch structure for the species at the Alfacs Bay (Spain). Hence, the growth of C. nodosa patches initially proceeds with a growth mode controlled by the branching pattern (branching frequency and angle) of the species, producing sparse and elongated patches. Once patches exceed 4–5 years of age and contained >500 shoots, becoming dense and circular, they shifts to a growth model typical of compact structures. These results explain previously unaccounted evidence of the emergence of nonlinear patch growth from simple clonal growth rules, and highlight the importance of branching frequency and angles as critical determinants of the space occupation rate of seagrasses and probably other clonal plants.  相似文献   

17.
动物对植物的采食会刺激植物进行补偿性更新生长, 克隆整合效应能够通过分株之间的物质传输增强克隆植物的这种补偿生长。现今对克隆整合效应在箭竹(Fargesia)补偿更新中的作用仍未得到全面认识。2011年10月到2012年11月, 设立了糙花箭竹(Fargesia scabrida)和缺苞箭竹(F. denudata)各40个样方, 分别进行不剪除样方内分株和剪除样方内分株数量的25%、50%、75%四种模拟采食干扰处理, 并将样方四周的根状茎切断或保持连接。从2012年6月起观测并统计了箭竹分株种群的累积出笋率、总出笋率、补充率, 以及新生分株的株高、基径和单株生物量。结果表明: (1)在不剪除分株的样方, 切断根状茎连接显著增加了糙花箭竹的出笋率和补充率, 但降低了新生分株的株高和单株生物量, 也显著降低了缺苞箭竹的出笋率和补充率; (2)保持根状茎连接时, 25%的剪除强度仅仅降低了糙花箭竹新生分株的单株生物量; 同样在保持根状茎连接的条件下, 25%、50%的剪除强度使缺苞箭竹种群的补充率有所降低, 而切断根状茎后缺苞箭竹在25%的剪除强度下的分株补充率反而升高; (3) 75%的剪除强度并未影响两种箭竹新生分株数量更新, 但造成新生分株质量显著下降; 切断根状茎连接显著降低了糙花箭竹的新生分株的株高和基径, 对缺苞箭竹影响不显著。实验证明克隆整合影响了两种箭竹新生分株的萌发、存活和生长, 但不是两种箭竹进行补偿更新的主要机制, 仅在糙花箭竹分株种群受到重度采食干扰后的更新中才起到明显的促进作用; 两种箭竹均能在50%的剪除强度下通过补偿生长恢复种群的稳定, 75%的剪除强度则会造成箭竹新生分株质量的下降。  相似文献   

18.
切断根茎对根茎禾草沙鞭和赖草克隆生长的影响   总被引:13,自引:0,他引:13  
为了研究半干旱内陆沙化生境中植物克隆整合对克隆植物基株扩展能力和对克隆植物分株定居逆境能力的贡献,在内蒙古鄂尔多斯高原毛乌素沙地对根茎禾草沙鞭(Rsammochloavillosa(Trin.)Bor)和赖草(Leymussecali-nus(Georgi.)Tzvel.)进行了以切断根茎为处理的野外实验。实验结果表明,切断根茎处理使根茎禾草沙鞭基株的幼小部分(观测单元)在实验期间根茎数量增量、地上技数量增量、地上枝总长度增量、主根茎节数增量、根茎节总数增量、主根茎长度增量和根茎总长度增量显著地减少。然而,切断根茎处理对另一根茎禾草赖草基株幼小部分(观测单元)的上述7个特征在实验期间的增量没有影响。这些结果指示着在克隆整合及其对克隆生长贡献方面的种间差异。沙鞭的克隆整合特性和克隆生长特性对它在水分短缺、蒸散剧烈、养分贫瘠、生境斑块化和扰动经常的沙化草地环境中的生存能力有重要贡献。  相似文献   

19.
Herbaceous species possess several mechanisms to compensate for tissue loss. For clonal herbaceous species, clonal integration may be an additional mechanism. This may especially hold true when tissue loss is very high, because other compensatory mechanisms may be insufficient. On inland dunes in northern China, we subjected Bromus ircutensis and Psammochloa villosa ramets within 0.5 m×0.5 m plots to three clipping treatments, i.e., no clipping, moderate (50% shoot removal) and heavy clipping (90% shoot removal), and kept rhizomes at the plot edges connected or disconnected. Moderate clipping did not reduce ramet, leaf or biomass density of either species. Under moderate clipping, rhizome connection significantly improved the performance of Psammochloa, but not that of Bromus. Heavy clipping reduced ramet, leaf and biomass density in the disconnected plots of both species, but such negative effects were negated or greatly ameliorated when the rhizomes were connected. Therefore, clonal integration contributed greatly to the compensatory growth of both species. The results suggest that clonal integration is an additional compensatory mechanism for clonal plants and may be important for their long-term persistence in the heavily grazed regions in northern China.  相似文献   

20.
Physiological integration is a major ecological advantage of clonal growth in angiosperms. Clonal growth is also common in pteridophytes, but almost no study has tested whether clonal integration increases performance in ramets of pteridophytes in natural populations. To test this hypothesis and also whether the positive effect of integration is greater on smaller ramets, we severed the connecting rhizomes of individual ramets of the common, understory fern Diplopterygium glaucum in an evergreen, broadleaf forest in southeastern China. In another experiment, we severed rhizomes around the edges of small plots each containing several ramets. After 19.5 weeks, survival was 100% in intact individual ramets but only 27% in severed ones. Among surviving ramets, final dry mass and lamina mass were also less in severed than in intact ramets, though stalk, rhizome, and root mass and maximum quantum yield of PSII (Fv/Fm) were not reduced. Individual ramets with fewer stalk nodes had lower dry mass but were not more affected by severing than ramets with more stalk nodes. Severance around the edge of plots did not significantly affect the combined final mass of the ramets within a plot. We conclude that clonal integration can have significant positive effects on both survival and growth of individual ramets of ferns in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号